Metamath Proof Explorer
Description: Inequality of an ordinal set with its successor. Does not use the axiom
of regularity. (Contributed by ML, 18-Oct-2020)
|
|
Ref |
Expression |
|
Hypotheses |
sucneqoni.1 |
⊢ 𝑋 = suc 𝑌 |
|
|
sucneqoni.2 |
⊢ 𝑌 ∈ On |
|
Assertion |
sucneqoni |
⊢ 𝑋 ≠ 𝑌 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sucneqoni.1 |
⊢ 𝑋 = suc 𝑌 |
| 2 |
|
sucneqoni.2 |
⊢ 𝑌 ∈ On |
| 3 |
1
|
a1i |
⊢ ( ⊤ → 𝑋 = suc 𝑌 ) |
| 4 |
2
|
a1i |
⊢ ( ⊤ → 𝑌 ∈ On ) |
| 5 |
3 4
|
sucneqond |
⊢ ( ⊤ → 𝑋 ≠ 𝑌 ) |
| 6 |
5
|
mptru |
⊢ 𝑋 ≠ 𝑌 |