Metamath Proof Explorer


Theorem sucneqoni

Description: Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020)

Ref Expression
Hypotheses sucneqoni.1 𝑋 = suc 𝑌
sucneqoni.2 𝑌 ∈ On
Assertion sucneqoni 𝑋𝑌

Proof

Step Hyp Ref Expression
1 sucneqoni.1 𝑋 = suc 𝑌
2 sucneqoni.2 𝑌 ∈ On
3 1 a1i ( ⊤ → 𝑋 = suc 𝑌 )
4 2 a1i ( ⊤ → 𝑌 ∈ On )
5 3 4 sucneqond ( ⊤ → 𝑋𝑌 )
6 5 mptru 𝑋𝑌