| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sucneqond.1 |
⊢ ( 𝜑 → 𝑋 = suc 𝑌 ) |
| 2 |
|
sucneqond.2 |
⊢ ( 𝜑 → 𝑌 ∈ On ) |
| 3 |
|
sucidg |
⊢ ( 𝑌 ∈ On → 𝑌 ∈ suc 𝑌 ) |
| 4 |
2 3
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ suc 𝑌 ) |
| 5 |
4 1
|
eleqtrrd |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
| 6 |
|
onsuc |
⊢ ( 𝑌 ∈ On → suc 𝑌 ∈ On ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → suc 𝑌 ∈ On ) |
| 8 |
1 7
|
eqeltrd |
⊢ ( 𝜑 → 𝑋 ∈ On ) |
| 9 |
|
eloni |
⊢ ( 𝑋 ∈ On → Ord 𝑋 ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → Ord 𝑋 ) |
| 11 |
|
ordirr |
⊢ ( Ord 𝑋 → ¬ 𝑋 ∈ 𝑋 ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑋 ) |
| 13 |
|
eleq1 |
⊢ ( 𝑋 = 𝑌 → ( 𝑋 ∈ 𝑋 ↔ 𝑌 ∈ 𝑋 ) ) |
| 14 |
13
|
biimprd |
⊢ ( 𝑋 = 𝑌 → ( 𝑌 ∈ 𝑋 → 𝑋 ∈ 𝑋 ) ) |
| 15 |
14
|
con3d |
⊢ ( 𝑋 = 𝑌 → ( ¬ 𝑋 ∈ 𝑋 → ¬ 𝑌 ∈ 𝑋 ) ) |
| 16 |
12 15
|
syl5com |
⊢ ( 𝜑 → ( 𝑋 = 𝑌 → ¬ 𝑌 ∈ 𝑋 ) ) |
| 17 |
5 16
|
mt2d |
⊢ ( 𝜑 → ¬ 𝑋 = 𝑌 ) |
| 18 |
17
|
neqned |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |