| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sucneqond.1 |
|- ( ph -> X = suc Y ) |
| 2 |
|
sucneqond.2 |
|- ( ph -> Y e. On ) |
| 3 |
|
sucidg |
|- ( Y e. On -> Y e. suc Y ) |
| 4 |
2 3
|
syl |
|- ( ph -> Y e. suc Y ) |
| 5 |
4 1
|
eleqtrrd |
|- ( ph -> Y e. X ) |
| 6 |
|
onsuc |
|- ( Y e. On -> suc Y e. On ) |
| 7 |
2 6
|
syl |
|- ( ph -> suc Y e. On ) |
| 8 |
1 7
|
eqeltrd |
|- ( ph -> X e. On ) |
| 9 |
|
eloni |
|- ( X e. On -> Ord X ) |
| 10 |
8 9
|
syl |
|- ( ph -> Ord X ) |
| 11 |
|
ordirr |
|- ( Ord X -> -. X e. X ) |
| 12 |
10 11
|
syl |
|- ( ph -> -. X e. X ) |
| 13 |
|
eleq1 |
|- ( X = Y -> ( X e. X <-> Y e. X ) ) |
| 14 |
13
|
biimprd |
|- ( X = Y -> ( Y e. X -> X e. X ) ) |
| 15 |
14
|
con3d |
|- ( X = Y -> ( -. X e. X -> -. Y e. X ) ) |
| 16 |
12 15
|
syl5com |
|- ( ph -> ( X = Y -> -. Y e. X ) ) |
| 17 |
5 16
|
mt2d |
|- ( ph -> -. X = Y ) |
| 18 |
17
|
neqned |
|- ( ph -> X =/= Y ) |