Metamath Proof Explorer


Theorem sucneqond

Description: Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020)

Ref Expression
Hypotheses sucneqond.1
|- ( ph -> X = suc Y )
sucneqond.2
|- ( ph -> Y e. On )
Assertion sucneqond
|- ( ph -> X =/= Y )

Proof

Step Hyp Ref Expression
1 sucneqond.1
 |-  ( ph -> X = suc Y )
2 sucneqond.2
 |-  ( ph -> Y e. On )
3 sucidg
 |-  ( Y e. On -> Y e. suc Y )
4 2 3 syl
 |-  ( ph -> Y e. suc Y )
5 4 1 eleqtrrd
 |-  ( ph -> Y e. X )
6 suceloni
 |-  ( Y e. On -> suc Y e. On )
7 2 6 syl
 |-  ( ph -> suc Y e. On )
8 1 7 eqeltrd
 |-  ( ph -> X e. On )
9 eloni
 |-  ( X e. On -> Ord X )
10 8 9 syl
 |-  ( ph -> Ord X )
11 ordirr
 |-  ( Ord X -> -. X e. X )
12 10 11 syl
 |-  ( ph -> -. X e. X )
13 eleq1
 |-  ( X = Y -> ( X e. X <-> Y e. X ) )
14 13 biimprd
 |-  ( X = Y -> ( Y e. X -> X e. X ) )
15 14 con3d
 |-  ( X = Y -> ( -. X e. X -> -. Y e. X ) )
16 12 15 syl5com
 |-  ( ph -> ( X = Y -> -. Y e. X ) )
17 5 16 mt2d
 |-  ( ph -> -. X = Y )
18 17 neqned
 |-  ( ph -> X =/= Y )