Metamath Proof Explorer


Theorem finxpreclem2

Description: Lemma for ^^ recursion theorems. (Contributed by ML, 17-Oct-2020)

Ref Expression
Assertion finxpreclem2 ( ( 𝑋 ∈ V ∧ ¬ 𝑋𝑈 ) → ¬ ∅ = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ ) )

Proof

Step Hyp Ref Expression
1 nfv 𝑥 ( 𝑋 ∈ V ∧ ¬ 𝑋𝑈 )
2 nfmpo2 𝑥 ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) )
3 nfcv 𝑥 ⟨ 1o , 𝑋
4 2 3 nffv 𝑥 ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ )
5 nfcv 𝑥
6 4 5 nfne 𝑥 ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ ) ≠ ∅
7 1 6 nfim 𝑥 ( ( 𝑋 ∈ V ∧ ¬ 𝑋𝑈 ) → ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ ) ≠ ∅ )
8 nfv 𝑛 𝑥 = 𝑋
9 nfv 𝑛 ( 𝑋 ∈ V ∧ ¬ 𝑋𝑈 )
10 nfmpo1 𝑛 ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) )
11 nfcv 𝑛 ⟨ 1o , 𝑋
12 10 11 nffv 𝑛 ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ )
13 nfcv 𝑛
14 12 13 nfne 𝑛 ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ ) ≠ ∅
15 9 14 nfim 𝑛 ( ( 𝑋 ∈ V ∧ ¬ 𝑋𝑈 ) → ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ ) ≠ ∅ )
16 8 15 nfim 𝑛 ( 𝑥 = 𝑋 → ( ( 𝑋 ∈ V ∧ ¬ 𝑋𝑈 ) → ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ ) ≠ ∅ ) )
17 1onn 1o ∈ ω
18 17 elexi 1o ∈ V
19 df-ov ( 1o ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) 𝑋 ) = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ )
20 0ex ∅ ∈ V
21 opex 𝑛 , ( 1st𝑥 ) ⟩ ∈ V
22 opex 𝑛 , 𝑥 ⟩ ∈ V
23 21 22 ifex if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ∈ V
24 20 23 ifex if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ∈ V
25 24 csbex 𝑋 / 𝑥 if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ∈ V
26 25 csbex 1o / 𝑛 𝑋 / 𝑥 if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ∈ V
27 eqid ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) = ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) )
28 27 ovmpos ( ( 1o ∈ ω ∧ 𝑋 ∈ V ∧ 1o / 𝑛 𝑋 / 𝑥 if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ∈ V ) → ( 1o ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) 𝑋 ) = 1o / 𝑛 𝑋 / 𝑥 if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) )
29 17 26 28 mp3an13 ( 𝑋 ∈ V → ( 1o ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) 𝑋 ) = 1o / 𝑛 𝑋 / 𝑥 if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) )
30 29 adantr ( ( 𝑋 ∈ V ∧ ( ¬ 𝑋𝑈 ∧ ( 𝑛 = 1o𝑥 = 𝑋 ) ) ) → ( 1o ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) 𝑋 ) = 1o / 𝑛 𝑋 / 𝑥 if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) )
31 csbeq1a ( 𝑥 = 𝑋 → if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) = 𝑋 / 𝑥 if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) )
32 csbeq1a ( 𝑛 = 1o 𝑋 / 𝑥 if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) = 1o / 𝑛 𝑋 / 𝑥 if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) )
33 31 32 sylan9eqr ( ( 𝑛 = 1o𝑥 = 𝑋 ) → if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) = 1o / 𝑛 𝑋 / 𝑥 if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) )
34 33 adantl ( ( ¬ 𝑋𝑈 ∧ ( 𝑛 = 1o𝑥 = 𝑋 ) ) → if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) = 1o / 𝑛 𝑋 / 𝑥 if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) )
35 eleq1 ( 𝑥 = 𝑋 → ( 𝑥𝑈𝑋𝑈 ) )
36 35 notbid ( 𝑥 = 𝑋 → ( ¬ 𝑥𝑈 ↔ ¬ 𝑋𝑈 ) )
37 36 biimprcd ( ¬ 𝑋𝑈 → ( 𝑥 = 𝑋 → ¬ 𝑥𝑈 ) )
38 pm3.14 ( ( ¬ 𝑛 = 1o ∨ ¬ 𝑥𝑈 ) → ¬ ( 𝑛 = 1o𝑥𝑈 ) )
39 38 olcs ( ¬ 𝑥𝑈 → ¬ ( 𝑛 = 1o𝑥𝑈 ) )
40 37 39 syl6 ( ¬ 𝑋𝑈 → ( 𝑥 = 𝑋 → ¬ ( 𝑛 = 1o𝑥𝑈 ) ) )
41 iffalse ( ¬ ( 𝑛 = 1o𝑥𝑈 ) → if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) = if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) )
42 40 41 syl6 ( ¬ 𝑋𝑈 → ( 𝑥 = 𝑋 → if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) = if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) )
43 42 imp ( ( ¬ 𝑋𝑈𝑥 = 𝑋 ) → if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) = if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) )
44 ifeqor ( if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) = ⟨ 𝑛 , ( 1st𝑥 ) ⟩ ∨ if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) = ⟨ 𝑛 , 𝑥 ⟩ )
45 vuniex 𝑛 ∈ V
46 fvex ( 1st𝑥 ) ∈ V
47 45 46 opnzi 𝑛 , ( 1st𝑥 ) ⟩ ≠ ∅
48 47 neii ¬ ⟨ 𝑛 , ( 1st𝑥 ) ⟩ = ∅
49 eqeq1 ( if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) = ⟨ 𝑛 , ( 1st𝑥 ) ⟩ → ( if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) = ∅ ↔ ⟨ 𝑛 , ( 1st𝑥 ) ⟩ = ∅ ) )
50 48 49 mtbiri ( if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) = ⟨ 𝑛 , ( 1st𝑥 ) ⟩ → ¬ if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) = ∅ )
51 vex 𝑛 ∈ V
52 vex 𝑥 ∈ V
53 51 52 opnzi 𝑛 , 𝑥 ⟩ ≠ ∅
54 53 neii ¬ ⟨ 𝑛 , 𝑥 ⟩ = ∅
55 eqeq1 ( if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) = ⟨ 𝑛 , 𝑥 ⟩ → ( if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) = ∅ ↔ ⟨ 𝑛 , 𝑥 ⟩ = ∅ ) )
56 54 55 mtbiri ( if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) = ⟨ 𝑛 , 𝑥 ⟩ → ¬ if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) = ∅ )
57 50 56 jaoi ( ( if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) = ⟨ 𝑛 , ( 1st𝑥 ) ⟩ ∨ if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) = ⟨ 𝑛 , 𝑥 ⟩ ) → ¬ if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) = ∅ )
58 44 57 mp1i ( ( ¬ 𝑋𝑈𝑥 = 𝑋 ) → ¬ if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) = ∅ )
59 58 neqned ( ( ¬ 𝑋𝑈𝑥 = 𝑋 ) → if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ≠ ∅ )
60 43 59 eqnetrd ( ( ¬ 𝑋𝑈𝑥 = 𝑋 ) → if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ≠ ∅ )
61 60 adantrl ( ( ¬ 𝑋𝑈 ∧ ( 𝑛 = 1o𝑥 = 𝑋 ) ) → if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ≠ ∅ )
62 34 61 eqnetrrd ( ( ¬ 𝑋𝑈 ∧ ( 𝑛 = 1o𝑥 = 𝑋 ) ) → 1o / 𝑛 𝑋 / 𝑥 if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ≠ ∅ )
63 62 adantl ( ( 𝑋 ∈ V ∧ ( ¬ 𝑋𝑈 ∧ ( 𝑛 = 1o𝑥 = 𝑋 ) ) ) → 1o / 𝑛 𝑋 / 𝑥 if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ≠ ∅ )
64 30 63 eqnetrd ( ( 𝑋 ∈ V ∧ ( ¬ 𝑋𝑈 ∧ ( 𝑛 = 1o𝑥 = 𝑋 ) ) ) → ( 1o ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) 𝑋 ) ≠ ∅ )
65 19 64 eqnetrrid ( ( 𝑋 ∈ V ∧ ( ¬ 𝑋𝑈 ∧ ( 𝑛 = 1o𝑥 = 𝑋 ) ) ) → ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ ) ≠ ∅ )
66 65 ancom2s ( ( 𝑋 ∈ V ∧ ( ( 𝑛 = 1o𝑥 = 𝑋 ) ∧ ¬ 𝑋𝑈 ) ) → ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ ) ≠ ∅ )
67 66 an12s ( ( ( 𝑛 = 1o𝑥 = 𝑋 ) ∧ ( 𝑋 ∈ V ∧ ¬ 𝑋𝑈 ) ) → ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ ) ≠ ∅ )
68 67 exp31 ( 𝑛 = 1o → ( 𝑥 = 𝑋 → ( ( 𝑋 ∈ V ∧ ¬ 𝑋𝑈 ) → ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ ) ≠ ∅ ) ) )
69 16 18 68 vtoclef ( 𝑥 = 𝑋 → ( ( 𝑋 ∈ V ∧ ¬ 𝑋𝑈 ) → ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ ) ≠ ∅ ) )
70 7 69 vtoclefex ( 𝑋 ∈ V → ( ( 𝑋 ∈ V ∧ ¬ 𝑋𝑈 ) → ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ ) ≠ ∅ ) )
71 70 anabsi5 ( ( 𝑋 ∈ V ∧ ¬ 𝑋𝑈 ) → ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ ) ≠ ∅ )
72 71 necomd ( ( 𝑋 ∈ V ∧ ¬ 𝑋𝑈 ) → ∅ ≠ ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ ) )
73 72 neneqd ( ( 𝑋 ∈ V ∧ ¬ 𝑋𝑈 ) → ¬ ∅ = ( ( 𝑛 ∈ ω , 𝑥 ∈ V ↦ if ( ( 𝑛 = 1o𝑥𝑈 ) , ∅ , if ( 𝑥 ∈ ( V × 𝑈 ) , ⟨ 𝑛 , ( 1st𝑥 ) ⟩ , ⟨ 𝑛 , 𝑥 ⟩ ) ) ) ‘ ⟨ 1o , 𝑋 ⟩ ) )