Metamath Proof Explorer


Theorem finxpreclem1

Description: Lemma for ^^ recursion theorems. (Contributed by ML, 17-Oct-2020)

Ref Expression
Assertion finxpreclem1 X U = n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x 1 𝑜 X

Proof

Step Hyp Ref Expression
1 eqidd X U n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x = n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x
2 eleq1a X U x = X x U
3 2 anim2d X U n = 1 𝑜 x = X n = 1 𝑜 x U
4 iftrue n = 1 𝑜 x U if n = 1 𝑜 x U if x V × U n 1 st x n x =
5 3 4 syl6 X U n = 1 𝑜 x = X if n = 1 𝑜 x U if x V × U n 1 st x n x =
6 5 imp X U n = 1 𝑜 x = X if n = 1 𝑜 x U if x V × U n 1 st x n x =
7 1onn 1 𝑜 ω
8 7 a1i X U 1 𝑜 ω
9 elex X U X V
10 0ex V
11 10 a1i X U V
12 1 6 8 9 11 ovmpod X U 1 𝑜 n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x X =
13 df-ov 1 𝑜 n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x X = n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x 1 𝑜 X
14 12 13 eqtr3di X U = n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x 1 𝑜 X