| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbrecsg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) )  =  recs ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) ) | 
						
							| 2 |  | csbmpt2 | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) )  =  ( 𝑔  ∈  V  ↦  ⦋ 𝐴  /  𝑥 ⦌ if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) | 
						
							| 3 |  | csbif | ⊢ ⦋ 𝐴  /  𝑥 ⦌ if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) )  =  if ( [ 𝐴  /  𝑥 ] 𝑔  =  ∅ ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐼 ,  ⦋ 𝐴  /  𝑥 ⦌ if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) | 
						
							| 4 |  | sbcg | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑔  =  ∅  ↔  𝑔  =  ∅ ) ) | 
						
							| 5 |  | csbif | ⊢ ⦋ 𝐴  /  𝑥 ⦌ if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) )  =  if ( [ 𝐴  /  𝑥 ] Lim  dom  𝑔 ,  ⦋ 𝐴  /  𝑥 ⦌ ∪  ran  𝑔 ,  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) | 
						
							| 6 |  | sbcg | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] Lim  dom  𝑔  ↔  Lim  dom  𝑔 ) ) | 
						
							| 7 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ∪  ran  𝑔  =  ∪  ran  𝑔 ) | 
						
							| 8 |  | csbfv12 | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ‘ ⦋ 𝐴  /  𝑥 ⦌ ( 𝑔 ‘ ∪  dom  𝑔 ) ) | 
						
							| 9 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑔 ‘ ∪  dom  𝑔 )  =  ( 𝑔 ‘ ∪  dom  𝑔 ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ‘ ⦋ 𝐴  /  𝑥 ⦌ ( 𝑔 ‘ ∪  dom  𝑔 ) )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) | 
						
							| 11 | 8 10 | eqtrid | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) | 
						
							| 12 | 6 7 11 | ifbieq12d | ⊢ ( 𝐴  ∈  𝑉  →  if ( [ 𝐴  /  𝑥 ] Lim  dom  𝑔 ,  ⦋ 𝐴  /  𝑥 ⦌ ∪  ran  𝑔 ,  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) )  =  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) | 
						
							| 13 | 5 12 | eqtrid | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) )  =  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) | 
						
							| 14 | 4 13 | ifbieq2d | ⊢ ( 𝐴  ∈  𝑉  →  if ( [ 𝐴  /  𝑥 ] 𝑔  =  ∅ ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐼 ,  ⦋ 𝐴  /  𝑥 ⦌ if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) )  =  if ( 𝑔  =  ∅ ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) | 
						
							| 15 | 3 14 | eqtrid | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) )  =  if ( 𝑔  =  ∅ ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) | 
						
							| 16 | 15 | mpteq2dv | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑔  ∈  V  ↦  ⦋ 𝐴  /  𝑥 ⦌ if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) )  =  ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) | 
						
							| 17 | 2 16 | eqtrd | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) )  =  ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) | 
						
							| 18 |  | recseq | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) )  =  ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) )  →  recs ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) )  =  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝐴  ∈  𝑉  →  recs ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) )  =  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) ) | 
						
							| 20 | 1 19 | eqtrd | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) )  =  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) ) | 
						
							| 21 |  | df-rdg | ⊢ rec ( 𝐹 ,  𝐼 )  =  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) | 
						
							| 22 | 21 | csbeq2i | ⊢ ⦋ 𝐴  /  𝑥 ⦌ rec ( 𝐹 ,  𝐼 )  =  ⦋ 𝐴  /  𝑥 ⦌ recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) | 
						
							| 23 |  | df-rdg | ⊢ rec ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐼 )  =  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) | 
						
							| 24 | 20 22 23 | 3eqtr4g | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ rec ( 𝐹 ,  𝐼 )  =  rec ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐼 ) ) |