Metamath Proof Explorer


Theorem csbrdgg

Description: Move class substitution in and out of the recursive function generator. (Contributed by ML, 25-Oct-2020)

Ref Expression
Assertion csbrdgg A V A / x rec F I = rec A / x F A / x I

Proof

Step Hyp Ref Expression
1 csbrecsg A V A / x recs g V if g = I if Lim dom g ran g F g dom g = recs A / x g V if g = I if Lim dom g ran g F g dom g
2 csbmpt2 A V A / x g V if g = I if Lim dom g ran g F g dom g = g V A / x if g = I if Lim dom g ran g F g dom g
3 csbif A / x if g = I if Lim dom g ran g F g dom g = if [˙A / x]˙ g = A / x I A / x if Lim dom g ran g F g dom g
4 sbcg A V [˙A / x]˙ g = g =
5 csbif A / x if Lim dom g ran g F g dom g = if [˙A / x]˙ Lim dom g A / x ran g A / x F g dom g
6 sbcg A V [˙A / x]˙ Lim dom g Lim dom g
7 csbconstg A V A / x ran g = ran g
8 csbfv12 A / x F g dom g = A / x F A / x g dom g
9 csbconstg A V A / x g dom g = g dom g
10 9 fveq2d A V A / x F A / x g dom g = A / x F g dom g
11 8 10 eqtrid A V A / x F g dom g = A / x F g dom g
12 6 7 11 ifbieq12d A V if [˙A / x]˙ Lim dom g A / x ran g A / x F g dom g = if Lim dom g ran g A / x F g dom g
13 5 12 eqtrid A V A / x if Lim dom g ran g F g dom g = if Lim dom g ran g A / x F g dom g
14 4 13 ifbieq2d A V if [˙A / x]˙ g = A / x I A / x if Lim dom g ran g F g dom g = if g = A / x I if Lim dom g ran g A / x F g dom g
15 3 14 eqtrid A V A / x if g = I if Lim dom g ran g F g dom g = if g = A / x I if Lim dom g ran g A / x F g dom g
16 15 mpteq2dv A V g V A / x if g = I if Lim dom g ran g F g dom g = g V if g = A / x I if Lim dom g ran g A / x F g dom g
17 2 16 eqtrd A V A / x g V if g = I if Lim dom g ran g F g dom g = g V if g = A / x I if Lim dom g ran g A / x F g dom g
18 recseq A / x g V if g = I if Lim dom g ran g F g dom g = g V if g = A / x I if Lim dom g ran g A / x F g dom g recs A / x g V if g = I if Lim dom g ran g F g dom g = recs g V if g = A / x I if Lim dom g ran g A / x F g dom g
19 17 18 syl A V recs A / x g V if g = I if Lim dom g ran g F g dom g = recs g V if g = A / x I if Lim dom g ran g A / x F g dom g
20 1 19 eqtrd A V A / x recs g V if g = I if Lim dom g ran g F g dom g = recs g V if g = A / x I if Lim dom g ran g A / x F g dom g
21 df-rdg rec F I = recs g V if g = I if Lim dom g ran g F g dom g
22 21 csbeq2i A / x rec F I = A / x recs g V if g = I if Lim dom g ran g F g dom g
23 df-rdg rec A / x F A / x I = recs g V if g = A / x I if Lim dom g ran g A / x F g dom g
24 20 22 23 3eqtr4g A V A / x rec F I = rec A / x F A / x I