Step |
Hyp |
Ref |
Expression |
1 |
|
csbwrecsg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ wrecs ( E , On , 𝐹 ) = wrecs ( ⦋ 𝐴 / 𝑥 ⦌ E , ⦋ 𝐴 / 𝑥 ⦌ On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |
2 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ E = E ) |
3 |
|
wrecseq1 |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ E = E → wrecs ( ⦋ 𝐴 / 𝑥 ⦌ E , ⦋ 𝐴 / 𝑥 ⦌ On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) = wrecs ( E , ⦋ 𝐴 / 𝑥 ⦌ On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |
4 |
2 3
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → wrecs ( ⦋ 𝐴 / 𝑥 ⦌ E , ⦋ 𝐴 / 𝑥 ⦌ On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) = wrecs ( E , ⦋ 𝐴 / 𝑥 ⦌ On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |
5 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ On = On ) |
6 |
|
wrecseq2 |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ On = On → wrecs ( E , ⦋ 𝐴 / 𝑥 ⦌ On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) = wrecs ( E , On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → wrecs ( E , ⦋ 𝐴 / 𝑥 ⦌ On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) = wrecs ( E , On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |
8 |
1 4 7
|
3eqtrd |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ wrecs ( E , On , 𝐹 ) = wrecs ( E , On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |
9 |
|
df-recs |
⊢ recs ( 𝐹 ) = wrecs ( E , On , 𝐹 ) |
10 |
9
|
csbeq2i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ recs ( 𝐹 ) = ⦋ 𝐴 / 𝑥 ⦌ wrecs ( E , On , 𝐹 ) |
11 |
|
df-recs |
⊢ recs ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) = wrecs ( E , On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) |
12 |
8 10 11
|
3eqtr4g |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ recs ( 𝐹 ) = recs ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |