| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csbwrecsg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ wrecs ( E , On , 𝐹 ) = wrecs ( ⦋ 𝐴 / 𝑥 ⦌ E , ⦋ 𝐴 / 𝑥 ⦌ On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |
| 2 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ E = E ) |
| 3 |
|
wrecseq1 |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ E = E → wrecs ( ⦋ 𝐴 / 𝑥 ⦌ E , ⦋ 𝐴 / 𝑥 ⦌ On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) = wrecs ( E , ⦋ 𝐴 / 𝑥 ⦌ On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |
| 4 |
2 3
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → wrecs ( ⦋ 𝐴 / 𝑥 ⦌ E , ⦋ 𝐴 / 𝑥 ⦌ On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) = wrecs ( E , ⦋ 𝐴 / 𝑥 ⦌ On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |
| 5 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ On = On ) |
| 6 |
|
wrecseq2 |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ On = On → wrecs ( E , ⦋ 𝐴 / 𝑥 ⦌ On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) = wrecs ( E , On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |
| 7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → wrecs ( E , ⦋ 𝐴 / 𝑥 ⦌ On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) = wrecs ( E , On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |
| 8 |
1 4 7
|
3eqtrd |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ wrecs ( E , On , 𝐹 ) = wrecs ( E , On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |
| 9 |
|
df-recs |
⊢ recs ( 𝐹 ) = wrecs ( E , On , 𝐹 ) |
| 10 |
9
|
csbeq2i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ recs ( 𝐹 ) = ⦋ 𝐴 / 𝑥 ⦌ wrecs ( E , On , 𝐹 ) |
| 11 |
|
df-recs |
⊢ recs ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) = wrecs ( E , On , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) |
| 12 |
8 10 11
|
3eqtr4g |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ recs ( 𝐹 ) = recs ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |