| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbwrecsg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ wrecs (  E  ,  On ,  𝐹 )  =  wrecs ( ⦋ 𝐴  /  𝑥 ⦌  E  ,  ⦋ 𝐴  /  𝑥 ⦌ On ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ) ) | 
						
							| 2 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌  E   =   E  ) | 
						
							| 3 |  | wrecseq1 | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌  E   =   E   →  wrecs ( ⦋ 𝐴  /  𝑥 ⦌  E  ,  ⦋ 𝐴  /  𝑥 ⦌ On ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐹 )  =  wrecs (  E  ,  ⦋ 𝐴  /  𝑥 ⦌ On ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝐴  ∈  𝑉  →  wrecs ( ⦋ 𝐴  /  𝑥 ⦌  E  ,  ⦋ 𝐴  /  𝑥 ⦌ On ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐹 )  =  wrecs (  E  ,  ⦋ 𝐴  /  𝑥 ⦌ On ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ) ) | 
						
							| 5 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ On  =  On ) | 
						
							| 6 |  | wrecseq2 | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ On  =  On  →  wrecs (  E  ,  ⦋ 𝐴  /  𝑥 ⦌ On ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐹 )  =  wrecs (  E  ,  On ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝐴  ∈  𝑉  →  wrecs (  E  ,  ⦋ 𝐴  /  𝑥 ⦌ On ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐹 )  =  wrecs (  E  ,  On ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ) ) | 
						
							| 8 | 1 4 7 | 3eqtrd | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ wrecs (  E  ,  On ,  𝐹 )  =  wrecs (  E  ,  On ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ) ) | 
						
							| 9 |  | df-recs | ⊢ recs ( 𝐹 )  =  wrecs (  E  ,  On ,  𝐹 ) | 
						
							| 10 | 9 | csbeq2i | ⊢ ⦋ 𝐴  /  𝑥 ⦌ recs ( 𝐹 )  =  ⦋ 𝐴  /  𝑥 ⦌ wrecs (  E  ,  On ,  𝐹 ) | 
						
							| 11 |  | df-recs | ⊢ recs ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 )  =  wrecs (  E  ,  On ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ) | 
						
							| 12 | 8 10 11 | 3eqtr4g | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ recs ( 𝐹 )  =  recs ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ) ) |