Step |
Hyp |
Ref |
Expression |
1 |
|
csbfrecsg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ frecs ( 𝑅 , 𝐷 , ( 𝐹 ∘ 2nd ) ) = frecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ∘ 2nd ) ) ) |
2 |
|
eqid |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 |
3 |
|
eqid |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 |
4 |
|
csbcog |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ∘ 2nd ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∘ ⦋ 𝐴 / 𝑥 ⦌ 2nd ) ) |
5 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 2nd = 2nd ) |
6 |
5
|
coeq2d |
⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∘ ⦋ 𝐴 / 𝑥 ⦌ 2nd ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∘ 2nd ) ) |
7 |
4 6
|
eqtrd |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ∘ 2nd ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∘ 2nd ) ) |
8 |
|
frecseq123 |
⊢ ( ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∧ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∧ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ∘ 2nd ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∘ 2nd ) ) → frecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ∘ 2nd ) ) = frecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∘ 2nd ) ) ) |
9 |
2 3 7 8
|
mp3an12i |
⊢ ( 𝐴 ∈ 𝑉 → frecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ∘ 2nd ) ) = frecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∘ 2nd ) ) ) |
10 |
1 9
|
eqtrd |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ frecs ( 𝑅 , 𝐷 , ( 𝐹 ∘ 2nd ) ) = frecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∘ 2nd ) ) ) |
11 |
|
df-wrecs |
⊢ wrecs ( 𝑅 , 𝐷 , 𝐹 ) = frecs ( 𝑅 , 𝐷 , ( 𝐹 ∘ 2nd ) ) |
12 |
11
|
csbeq2i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ wrecs ( 𝑅 , 𝐷 , 𝐹 ) = ⦋ 𝐴 / 𝑥 ⦌ frecs ( 𝑅 , 𝐷 , ( 𝐹 ∘ 2nd ) ) |
13 |
|
df-wrecs |
⊢ wrecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) = frecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∘ 2nd ) ) |
14 |
10 12 13
|
3eqtr4g |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ wrecs ( 𝑅 , 𝐷 , 𝐹 ) = wrecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |