Metamath Proof Explorer


Theorem csbwrecsg

Description: Move class substitution in and out of the well-founded recursive function generator. (Contributed by ML, 25-Oct-2020)

Ref Expression
Assertion csbwrecsg ( 𝐴𝑉 𝐴 / 𝑥 wrecs ( 𝑅 , 𝐷 , 𝐹 ) = wrecs ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝐴 / 𝑥 𝐹 ) )

Proof

Step Hyp Ref Expression
1 csbuni 𝐴 / 𝑥 { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } = 𝐴 / 𝑥 { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) }
2 csbab 𝐴 / 𝑥 { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } = { 𝑓[ 𝐴 / 𝑥 ]𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) }
3 sbcex2 ( [ 𝐴 / 𝑥 ]𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ↔ ∃ 𝑧 [ 𝐴 / 𝑥 ] ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) )
4 sbc3an ( [ 𝐴 / 𝑥 ] ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝑓 Fn 𝑧[ 𝐴 / 𝑥 ] ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ [ 𝐴 / 𝑥 ]𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) )
5 sbcg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝑓 Fn 𝑧𝑓 Fn 𝑧 ) )
6 sbcan ( [ 𝐴 / 𝑥 ] ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑧𝐷[ 𝐴 / 𝑥 ]𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) )
7 sbcssg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧𝐷 𝐴 / 𝑥 𝑧 𝐴 / 𝑥 𝐷 ) )
8 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 𝑧 = 𝑧 )
9 8 sseq1d ( 𝐴𝑉 → ( 𝐴 / 𝑥 𝑧 𝐴 / 𝑥 𝐷𝑧 𝐴 / 𝑥 𝐷 ) )
10 7 9 bitrd ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧𝐷𝑧 𝐴 / 𝑥 𝐷 ) )
11 sbcralg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ]𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑦𝑧 [ 𝐴 / 𝑥 ] Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) )
12 sbcssg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 𝐴 / 𝑥 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝐴 / 𝑥 𝑧 ) )
13 8 sseq2d ( 𝐴𝑉 → ( 𝐴 / 𝑥 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝐴 / 𝑥 𝑧 𝐴 / 𝑥 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) )
14 csbpredg ( 𝐴𝑉 𝐴 / 𝑥 Pred ( 𝑅 , 𝐷 , 𝑦 ) = Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝐴 / 𝑥 𝑦 ) )
15 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 𝑦 = 𝑦 )
16 predeq3 ( 𝐴 / 𝑥 𝑦 = 𝑦 → Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝐴 / 𝑥 𝑦 ) = Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) )
17 15 16 syl ( 𝐴𝑉 → Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝐴 / 𝑥 𝑦 ) = Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) )
18 14 17 eqtrd ( 𝐴𝑉 𝐴 / 𝑥 Pred ( 𝑅 , 𝐷 , 𝑦 ) = Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) )
19 18 sseq1d ( 𝐴𝑉 → ( 𝐴 / 𝑥 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ↔ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) )
20 12 13 19 3bitrd ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ↔ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) )
21 20 ralbidv ( 𝐴𝑉 → ( ∀ 𝑦𝑧 [ 𝐴 / 𝑥 ] Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) )
22 11 21 bitrd ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ]𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) )
23 10 22 anbi12d ( 𝐴𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝑧𝐷[ 𝐴 / 𝑥 ]𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ↔ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ) )
24 6 23 syl5bb ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ↔ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ) )
25 sbcralg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ]𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ↔ ∀ 𝑦𝑧 [ 𝐴 / 𝑥 ] ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) )
26 sbceqg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ↔ 𝐴 / 𝑥 ( 𝑓𝑦 ) = 𝐴 / 𝑥 ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) )
27 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 ( 𝑓𝑦 ) = ( 𝑓𝑦 ) )
28 csbfv12 𝐴 / 𝑥 ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) = ( 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) )
29 csbres 𝐴 / 𝑥 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) = ( 𝐴 / 𝑥 𝑓 𝐴 / 𝑥 Pred ( 𝑅 , 𝐷 , 𝑦 ) )
30 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 𝑓 = 𝑓 )
31 30 18 reseq12d ( 𝐴𝑉 → ( 𝐴 / 𝑥 𝑓 𝐴 / 𝑥 Pred ( 𝑅 , 𝐷 , 𝑦 ) ) = ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) )
32 29 31 syl5eq ( 𝐴𝑉 𝐴 / 𝑥 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) = ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) )
33 32 fveq2d ( 𝐴𝑉 → ( 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) = ( 𝐴 / 𝑥 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) )
34 28 33 syl5eq ( 𝐴𝑉 𝐴 / 𝑥 ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) = ( 𝐴 / 𝑥 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) )
35 27 34 eqeq12d ( 𝐴𝑉 → ( 𝐴 / 𝑥 ( 𝑓𝑦 ) = 𝐴 / 𝑥 ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ↔ ( 𝑓𝑦 ) = ( 𝐴 / 𝑥 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) )
36 26 35 bitrd ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ↔ ( 𝑓𝑦 ) = ( 𝐴 / 𝑥 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) )
37 36 ralbidv ( 𝐴𝑉 → ( ∀ 𝑦𝑧 [ 𝐴 / 𝑥 ] ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ↔ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐴 / 𝑥 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) )
38 25 37 bitrd ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ]𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ↔ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐴 / 𝑥 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) )
39 5 24 38 3anbi123d ( 𝐴𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝑓 Fn 𝑧[ 𝐴 / 𝑥 ] ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ [ 𝐴 / 𝑥 ]𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ↔ ( 𝑓 Fn 𝑧 ∧ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐴 / 𝑥 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) ) )
40 4 39 syl5bb ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ↔ ( 𝑓 Fn 𝑧 ∧ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐴 / 𝑥 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) ) )
41 40 exbidv ( 𝐴𝑉 → ( ∃ 𝑧 [ 𝐴 / 𝑥 ] ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ↔ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐴 / 𝑥 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) ) )
42 3 41 syl5bb ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ]𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ↔ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐴 / 𝑥 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) ) )
43 42 abbidv ( 𝐴𝑉 → { 𝑓[ 𝐴 / 𝑥 ]𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐴 / 𝑥 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) } )
44 2 43 syl5eq ( 𝐴𝑉 𝐴 / 𝑥 { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐴 / 𝑥 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) } )
45 44 unieqd ( 𝐴𝑉 𝐴 / 𝑥 { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐴 / 𝑥 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) } )
46 1 45 syl5eq ( 𝐴𝑉 𝐴 / 𝑥 { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐴 / 𝑥 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) } )
47 df-wrecs wrecs ( 𝑅 , 𝐷 , 𝐹 ) = { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) }
48 47 csbeq2i 𝐴 / 𝑥 wrecs ( 𝑅 , 𝐷 , 𝐹 ) = 𝐴 / 𝑥 { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) }
49 df-wrecs wrecs ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝐴 / 𝑥 𝐹 ) = { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝐴 / 𝑥 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) }
50 46 48 49 3eqtr4g ( 𝐴𝑉 𝐴 / 𝑥 wrecs ( 𝑅 , 𝐷 , 𝐹 ) = wrecs ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝐴 / 𝑥 𝐹 ) )