Step |
Hyp |
Ref |
Expression |
1 |
|
csbfrecsg |
|- ( A e. V -> [_ A / x ]_ frecs ( R , D , ( F o. 2nd ) ) = frecs ( [_ A / x ]_ R , [_ A / x ]_ D , [_ A / x ]_ ( F o. 2nd ) ) ) |
2 |
|
eqid |
|- [_ A / x ]_ R = [_ A / x ]_ R |
3 |
|
eqid |
|- [_ A / x ]_ D = [_ A / x ]_ D |
4 |
|
csbcog |
|- ( A e. V -> [_ A / x ]_ ( F o. 2nd ) = ( [_ A / x ]_ F o. [_ A / x ]_ 2nd ) ) |
5 |
|
csbconstg |
|- ( A e. V -> [_ A / x ]_ 2nd = 2nd ) |
6 |
5
|
coeq2d |
|- ( A e. V -> ( [_ A / x ]_ F o. [_ A / x ]_ 2nd ) = ( [_ A / x ]_ F o. 2nd ) ) |
7 |
4 6
|
eqtrd |
|- ( A e. V -> [_ A / x ]_ ( F o. 2nd ) = ( [_ A / x ]_ F o. 2nd ) ) |
8 |
|
frecseq123 |
|- ( ( [_ A / x ]_ R = [_ A / x ]_ R /\ [_ A / x ]_ D = [_ A / x ]_ D /\ [_ A / x ]_ ( F o. 2nd ) = ( [_ A / x ]_ F o. 2nd ) ) -> frecs ( [_ A / x ]_ R , [_ A / x ]_ D , [_ A / x ]_ ( F o. 2nd ) ) = frecs ( [_ A / x ]_ R , [_ A / x ]_ D , ( [_ A / x ]_ F o. 2nd ) ) ) |
9 |
2 3 7 8
|
mp3an12i |
|- ( A e. V -> frecs ( [_ A / x ]_ R , [_ A / x ]_ D , [_ A / x ]_ ( F o. 2nd ) ) = frecs ( [_ A / x ]_ R , [_ A / x ]_ D , ( [_ A / x ]_ F o. 2nd ) ) ) |
10 |
1 9
|
eqtrd |
|- ( A e. V -> [_ A / x ]_ frecs ( R , D , ( F o. 2nd ) ) = frecs ( [_ A / x ]_ R , [_ A / x ]_ D , ( [_ A / x ]_ F o. 2nd ) ) ) |
11 |
|
df-wrecs |
|- wrecs ( R , D , F ) = frecs ( R , D , ( F o. 2nd ) ) |
12 |
11
|
csbeq2i |
|- [_ A / x ]_ wrecs ( R , D , F ) = [_ A / x ]_ frecs ( R , D , ( F o. 2nd ) ) |
13 |
|
df-wrecs |
|- wrecs ( [_ A / x ]_ R , [_ A / x ]_ D , [_ A / x ]_ F ) = frecs ( [_ A / x ]_ R , [_ A / x ]_ D , ( [_ A / x ]_ F o. 2nd ) ) |
14 |
10 12 13
|
3eqtr4g |
|- ( A e. V -> [_ A / x ]_ wrecs ( R , D , F ) = wrecs ( [_ A / x ]_ R , [_ A / x ]_ D , [_ A / x ]_ F ) ) |