| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							csbuni | 
							⊢ ⦋ 𝐴  /  𝑥 ⦌ ∪  { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) }  =  ∪  ⦋ 𝐴  /  𝑥 ⦌ { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) }  | 
						
						
							| 2 | 
							
								
							 | 
							csbab | 
							⊢ ⦋ 𝐴  /  𝑥 ⦌ { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) }  =  { 𝑓  ∣  [ 𝐴  /  𝑥 ] ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) }  | 
						
						
							| 3 | 
							
								
							 | 
							sbcex2 | 
							⊢ ( [ 𝐴  /  𝑥 ] ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) )  ↔  ∃ 𝑧 [ 𝐴  /  𝑥 ] ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							sbc3an | 
							⊢ ( [ 𝐴  /  𝑥 ] ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) )  ↔  ( [ 𝐴  /  𝑥 ] 𝑓  Fn  𝑧  ∧  [ 𝐴  /  𝑥 ] ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							sbcg | 
							⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑓  Fn  𝑧  ↔  𝑓  Fn  𝑧 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							sbcan | 
							⊢ ( [ 𝐴  /  𝑥 ] ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑧  ⊆  𝐷  ∧  [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							sbcssg | 
							⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑧  ⊆  𝐷  ↔  ⦋ 𝐴  /  𝑥 ⦌ 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							csbconstg | 
							⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ 𝑧  =  𝑧 )  | 
						
						
							| 9 | 
							
								8
							 | 
							sseq1d | 
							⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ↔  𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							bitrd | 
							⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑧  ⊆  𝐷  ↔  𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							sbcralg | 
							⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧  ↔  ∀ 𝑦  ∈  𝑧 [ 𝐴  /  𝑥 ] Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							sbcssg | 
							⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧  ↔  ⦋ 𝐴  /  𝑥 ⦌ Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝑧 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							csbpredg | 
							⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ Pred ( 𝑅 ,  𝐷 ,  𝑦 )  =  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝑦 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							csbconstg | 
							⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ 𝑦  =  𝑦 )  | 
						
						
							| 15 | 
							
								
							 | 
							predeq3 | 
							⊢ ( ⦋ 𝐴  /  𝑥 ⦌ 𝑦  =  𝑦  →  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝑦 )  =  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							⊢ ( 𝐴  ∈  𝑉  →  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝑦 )  =  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							eqtrd | 
							⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ Pred ( 𝑅 ,  𝐷 ,  𝑦 )  =  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) )  | 
						
						
							| 18 | 
							
								17 8
							 | 
							sseq12d | 
							⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝑧  ↔  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 ) )  | 
						
						
							| 19 | 
							
								12 18
							 | 
							bitrd | 
							⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧  ↔  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							ralbidv | 
							⊢ ( 𝐴  ∈  𝑉  →  ( ∀ 𝑦  ∈  𝑧 [ 𝐴  /  𝑥 ] Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧  ↔  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 ) )  | 
						
						
							| 21 | 
							
								11 20
							 | 
							bitrd | 
							⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧  ↔  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 ) )  | 
						
						
							| 22 | 
							
								10 21
							 | 
							anbi12d | 
							⊢ ( 𝐴  ∈  𝑉  →  ( ( [ 𝐴  /  𝑥 ] 𝑧  ⊆  𝐷  ∧  [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ↔  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 ) ) )  | 
						
						
							| 23 | 
							
								6 22
							 | 
							bitrid | 
							⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ↔  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							sbcralg | 
							⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  ↔  ∀ 𝑦  ∈  𝑧 [ 𝐴  /  𝑥 ] ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							sbceqg | 
							⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  ↔  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑓 ‘ 𝑦 )  =  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							csbconstg | 
							⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑓 ‘ 𝑦 )  =  ( 𝑓 ‘ 𝑦 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							csbov123 | 
							⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ⦋ 𝐴  /  𝑥 ⦌ ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							csbres | 
							⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑓  ↾  ⦋ 𝐴  /  𝑥 ⦌ Pred ( 𝑅 ,  𝐷 ,  𝑦 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							csbconstg | 
							⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ 𝑓  =  𝑓 )  | 
						
						
							| 30 | 
							
								29 17
							 | 
							reseq12d | 
							⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑓  ↾  ⦋ 𝐴  /  𝑥 ⦌ Pred ( 𝑅 ,  𝐷 ,  𝑦 ) )  =  ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) )  | 
						
						
							| 31 | 
							
								28 30
							 | 
							eqtrid | 
							⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) )  =  ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) )  | 
						
						
							| 32 | 
							
								14 31
							 | 
							oveq12d | 
							⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ⦋ 𝐴  /  𝑥 ⦌ ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) )  | 
						
						
							| 33 | 
							
								27 32
							 | 
							eqtrid | 
							⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) )  | 
						
						
							| 34 | 
							
								26 33
							 | 
							eqeq12d | 
							⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝑓 ‘ 𝑦 )  =  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  ↔  ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) )  | 
						
						
							| 35 | 
							
								25 34
							 | 
							bitrd | 
							⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  ↔  ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							ralbidv | 
							⊢ ( 𝐴  ∈  𝑉  →  ( ∀ 𝑦  ∈  𝑧 [ 𝐴  /  𝑥 ] ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  ↔  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) )  | 
						
						
							| 37 | 
							
								24 36
							 | 
							bitrd | 
							⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  ↔  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) )  | 
						
						
							| 38 | 
							
								5 23 37
							 | 
							3anbi123d | 
							⊢ ( 𝐴  ∈  𝑉  →  ( ( [ 𝐴  /  𝑥 ] 𝑓  Fn  𝑧  ∧  [ 𝐴  /  𝑥 ] ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) )  ↔  ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) ) )  | 
						
						
							| 39 | 
							
								4 38
							 | 
							bitrid | 
							⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) )  ↔  ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							exbidv | 
							⊢ ( 𝐴  ∈  𝑉  →  ( ∃ 𝑧 [ 𝐴  /  𝑥 ] ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) )  ↔  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) ) )  | 
						
						
							| 41 | 
							
								3 40
							 | 
							bitrid | 
							⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) )  ↔  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							abbidv | 
							⊢ ( 𝐴  ∈  𝑉  →  { 𝑓  ∣  [ 𝐴  /  𝑥 ] ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) }  =  { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) } )  | 
						
						
							| 43 | 
							
								2 42
							 | 
							eqtrid | 
							⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) }  =  { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) } )  | 
						
						
							| 44 | 
							
								43
							 | 
							unieqd | 
							⊢ ( 𝐴  ∈  𝑉  →  ∪  ⦋ 𝐴  /  𝑥 ⦌ { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) }  =  ∪  { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) } )  | 
						
						
							| 45 | 
							
								1 44
							 | 
							eqtrid | 
							⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ∪  { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) }  =  ∪  { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) } )  | 
						
						
							| 46 | 
							
								
							 | 
							df-frecs | 
							⊢ frecs ( 𝑅 ,  𝐷 ,  𝐹 )  =  ∪  { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) }  | 
						
						
							| 47 | 
							
								46
							 | 
							csbeq2i | 
							⊢ ⦋ 𝐴  /  𝑥 ⦌ frecs ( 𝑅 ,  𝐷 ,  𝐹 )  =  ⦋ 𝐴  /  𝑥 ⦌ ∪  { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) }  | 
						
						
							| 48 | 
							
								
							 | 
							df-frecs | 
							⊢ frecs ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐹 )  =  ∪  { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) }  | 
						
						
							| 49 | 
							
								45 47 48
							 | 
							3eqtr4g | 
							⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ frecs ( 𝑅 ,  𝐷 ,  𝐹 )  =  frecs ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ) )  |