| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbwrecsg |  |-  ( A e. V -> [_ A / x ]_ wrecs ( _E , On , F ) = wrecs ( [_ A / x ]_ _E , [_ A / x ]_ On , [_ A / x ]_ F ) ) | 
						
							| 2 |  | csbconstg |  |-  ( A e. V -> [_ A / x ]_ _E = _E ) | 
						
							| 3 |  | wrecseq1 |  |-  ( [_ A / x ]_ _E = _E -> wrecs ( [_ A / x ]_ _E , [_ A / x ]_ On , [_ A / x ]_ F ) = wrecs ( _E , [_ A / x ]_ On , [_ A / x ]_ F ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( A e. V -> wrecs ( [_ A / x ]_ _E , [_ A / x ]_ On , [_ A / x ]_ F ) = wrecs ( _E , [_ A / x ]_ On , [_ A / x ]_ F ) ) | 
						
							| 5 |  | csbconstg |  |-  ( A e. V -> [_ A / x ]_ On = On ) | 
						
							| 6 |  | wrecseq2 |  |-  ( [_ A / x ]_ On = On -> wrecs ( _E , [_ A / x ]_ On , [_ A / x ]_ F ) = wrecs ( _E , On , [_ A / x ]_ F ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( A e. V -> wrecs ( _E , [_ A / x ]_ On , [_ A / x ]_ F ) = wrecs ( _E , On , [_ A / x ]_ F ) ) | 
						
							| 8 | 1 4 7 | 3eqtrd |  |-  ( A e. V -> [_ A / x ]_ wrecs ( _E , On , F ) = wrecs ( _E , On , [_ A / x ]_ F ) ) | 
						
							| 9 |  | df-recs |  |-  recs ( F ) = wrecs ( _E , On , F ) | 
						
							| 10 | 9 | csbeq2i |  |-  [_ A / x ]_ recs ( F ) = [_ A / x ]_ wrecs ( _E , On , F ) | 
						
							| 11 |  | df-recs |  |-  recs ( [_ A / x ]_ F ) = wrecs ( _E , On , [_ A / x ]_ F ) | 
						
							| 12 | 8 10 11 | 3eqtr4g |  |-  ( A e. V -> [_ A / x ]_ recs ( F ) = recs ( [_ A / x ]_ F ) ) |