| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csbwrecsg |
|- ( A e. V -> [_ A / x ]_ wrecs ( _E , On , F ) = wrecs ( [_ A / x ]_ _E , [_ A / x ]_ On , [_ A / x ]_ F ) ) |
| 2 |
|
csbconstg |
|- ( A e. V -> [_ A / x ]_ _E = _E ) |
| 3 |
|
wrecseq1 |
|- ( [_ A / x ]_ _E = _E -> wrecs ( [_ A / x ]_ _E , [_ A / x ]_ On , [_ A / x ]_ F ) = wrecs ( _E , [_ A / x ]_ On , [_ A / x ]_ F ) ) |
| 4 |
2 3
|
syl |
|- ( A e. V -> wrecs ( [_ A / x ]_ _E , [_ A / x ]_ On , [_ A / x ]_ F ) = wrecs ( _E , [_ A / x ]_ On , [_ A / x ]_ F ) ) |
| 5 |
|
csbconstg |
|- ( A e. V -> [_ A / x ]_ On = On ) |
| 6 |
|
wrecseq2 |
|- ( [_ A / x ]_ On = On -> wrecs ( _E , [_ A / x ]_ On , [_ A / x ]_ F ) = wrecs ( _E , On , [_ A / x ]_ F ) ) |
| 7 |
5 6
|
syl |
|- ( A e. V -> wrecs ( _E , [_ A / x ]_ On , [_ A / x ]_ F ) = wrecs ( _E , On , [_ A / x ]_ F ) ) |
| 8 |
1 4 7
|
3eqtrd |
|- ( A e. V -> [_ A / x ]_ wrecs ( _E , On , F ) = wrecs ( _E , On , [_ A / x ]_ F ) ) |
| 9 |
|
df-recs |
|- recs ( F ) = wrecs ( _E , On , F ) |
| 10 |
9
|
csbeq2i |
|- [_ A / x ]_ recs ( F ) = [_ A / x ]_ wrecs ( _E , On , F ) |
| 11 |
|
df-recs |
|- recs ( [_ A / x ]_ F ) = wrecs ( _E , On , [_ A / x ]_ F ) |
| 12 |
8 10 11
|
3eqtr4g |
|- ( A e. V -> [_ A / x ]_ recs ( F ) = recs ( [_ A / x ]_ F ) ) |