Metamath Proof Explorer


Theorem csbrecsg

Description: Move class substitution in and out of recs . (Contributed by ML, 25-Oct-2020)

Ref Expression
Assertion csbrecsg
|- ( A e. V -> [_ A / x ]_ recs ( F ) = recs ( [_ A / x ]_ F ) )

Proof

Step Hyp Ref Expression
1 csbwrecsg
 |-  ( A e. V -> [_ A / x ]_ wrecs ( _E , On , F ) = wrecs ( [_ A / x ]_ _E , [_ A / x ]_ On , [_ A / x ]_ F ) )
2 csbconstg
 |-  ( A e. V -> [_ A / x ]_ _E = _E )
3 wrecseq1
 |-  ( [_ A / x ]_ _E = _E -> wrecs ( [_ A / x ]_ _E , [_ A / x ]_ On , [_ A / x ]_ F ) = wrecs ( _E , [_ A / x ]_ On , [_ A / x ]_ F ) )
4 2 3 syl
 |-  ( A e. V -> wrecs ( [_ A / x ]_ _E , [_ A / x ]_ On , [_ A / x ]_ F ) = wrecs ( _E , [_ A / x ]_ On , [_ A / x ]_ F ) )
5 csbconstg
 |-  ( A e. V -> [_ A / x ]_ On = On )
6 wrecseq2
 |-  ( [_ A / x ]_ On = On -> wrecs ( _E , [_ A / x ]_ On , [_ A / x ]_ F ) = wrecs ( _E , On , [_ A / x ]_ F ) )
7 5 6 syl
 |-  ( A e. V -> wrecs ( _E , [_ A / x ]_ On , [_ A / x ]_ F ) = wrecs ( _E , On , [_ A / x ]_ F ) )
8 1 4 7 3eqtrd
 |-  ( A e. V -> [_ A / x ]_ wrecs ( _E , On , F ) = wrecs ( _E , On , [_ A / x ]_ F ) )
9 df-recs
 |-  recs ( F ) = wrecs ( _E , On , F )
10 9 csbeq2i
 |-  [_ A / x ]_ recs ( F ) = [_ A / x ]_ wrecs ( _E , On , F )
11 df-recs
 |-  recs ( [_ A / x ]_ F ) = wrecs ( _E , On , [_ A / x ]_ F )
12 8 10 11 3eqtr4g
 |-  ( A e. V -> [_ A / x ]_ recs ( F ) = recs ( [_ A / x ]_ F ) )