| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csboprabg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ { 〈 〈 𝑦 ,  𝑧 〉 ,  𝑑 〉  ∣  ( ( 𝑦  ∈  𝑌  ∧  𝑧  ∈  𝑍 )  ∧  𝑑  =  𝐷 ) }  =  { 〈 〈 𝑦 ,  𝑧 〉 ,  𝑑 〉  ∣  [ 𝐴  /  𝑥 ] ( ( 𝑦  ∈  𝑌  ∧  𝑧  ∈  𝑍 )  ∧  𝑑  =  𝐷 ) } ) | 
						
							| 2 |  | sbcan | ⊢ ( [ 𝐴  /  𝑥 ] ( ( 𝑦  ∈  𝑌  ∧  𝑧  ∈  𝑍 )  ∧  𝑑  =  𝐷 )  ↔  ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝑌  ∧  𝑧  ∈  𝑍 )  ∧  [ 𝐴  /  𝑥 ] 𝑑  =  𝐷 ) ) | 
						
							| 3 |  | sbcan | ⊢ ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝑌  ∧  𝑧  ∈  𝑍 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑌  ∧  [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑍 ) ) | 
						
							| 4 |  | sbcel12 | ⊢ ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑌  ↔  ⦋ 𝐴  /  𝑥 ⦌ 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌 ) | 
						
							| 5 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ 𝑦  =  𝑦 ) | 
						
							| 6 | 5 | eleq1d | ⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌 ) ) | 
						
							| 7 | 4 6 | bitrid | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑌  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌 ) ) | 
						
							| 8 |  | sbcel12 | ⊢ ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑍  ↔  ⦋ 𝐴  /  𝑥 ⦌ 𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑍 ) | 
						
							| 9 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ 𝑧  =  𝑧 ) | 
						
							| 10 | 9 | eleq1d | ⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑍  ↔  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑍 ) ) | 
						
							| 11 | 8 10 | bitrid | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑍  ↔  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑍 ) ) | 
						
							| 12 | 7 11 | anbi12d | ⊢ ( 𝐴  ∈  𝑉  →  ( ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑌  ∧  [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑍 )  ↔  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑍 ) ) ) | 
						
							| 13 | 3 12 | bitrid | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝑌  ∧  𝑧  ∈  𝑍 )  ↔  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑍 ) ) ) | 
						
							| 14 |  | sbceq2g | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑑  =  𝐷  ↔  𝑑  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) ) | 
						
							| 15 | 13 14 | anbi12d | ⊢ ( 𝐴  ∈  𝑉  →  ( ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝑌  ∧  𝑧  ∈  𝑍 )  ∧  [ 𝐴  /  𝑥 ] 𝑑  =  𝐷 )  ↔  ( ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑍 )  ∧  𝑑  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) ) ) | 
						
							| 16 | 2 15 | bitrid | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ( ( 𝑦  ∈  𝑌  ∧  𝑧  ∈  𝑍 )  ∧  𝑑  =  𝐷 )  ↔  ( ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑍 )  ∧  𝑑  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) ) ) | 
						
							| 17 | 16 | oprabbidv | ⊢ ( 𝐴  ∈  𝑉  →  { 〈 〈 𝑦 ,  𝑧 〉 ,  𝑑 〉  ∣  [ 𝐴  /  𝑥 ] ( ( 𝑦  ∈  𝑌  ∧  𝑧  ∈  𝑍 )  ∧  𝑑  =  𝐷 ) }  =  { 〈 〈 𝑦 ,  𝑧 〉 ,  𝑑 〉  ∣  ( ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑍 )  ∧  𝑑  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) } ) | 
						
							| 18 | 1 17 | eqtrd | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ { 〈 〈 𝑦 ,  𝑧 〉 ,  𝑑 〉  ∣  ( ( 𝑦  ∈  𝑌  ∧  𝑧  ∈  𝑍 )  ∧  𝑑  =  𝐷 ) }  =  { 〈 〈 𝑦 ,  𝑧 〉 ,  𝑑 〉  ∣  ( ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑍 )  ∧  𝑑  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) } ) | 
						
							| 19 |  | df-mpo | ⊢ ( 𝑦  ∈  𝑌 ,  𝑧  ∈  𝑍  ↦  𝐷 )  =  { 〈 〈 𝑦 ,  𝑧 〉 ,  𝑑 〉  ∣  ( ( 𝑦  ∈  𝑌  ∧  𝑧  ∈  𝑍 )  ∧  𝑑  =  𝐷 ) } | 
						
							| 20 | 19 | csbeq2i | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝑦  ∈  𝑌 ,  𝑧  ∈  𝑍  ↦  𝐷 )  =  ⦋ 𝐴  /  𝑥 ⦌ { 〈 〈 𝑦 ,  𝑧 〉 ,  𝑑 〉  ∣  ( ( 𝑦  ∈  𝑌  ∧  𝑧  ∈  𝑍 )  ∧  𝑑  =  𝐷 ) } | 
						
							| 21 |  | df-mpo | ⊢ ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌 ,  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑍  ↦  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 )  =  { 〈 〈 𝑦 ,  𝑧 〉 ,  𝑑 〉  ∣  ( ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌  ∧  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑍 )  ∧  𝑑  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) } | 
						
							| 22 | 18 20 21 | 3eqtr4g | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑦  ∈  𝑌 ,  𝑧  ∈  𝑍  ↦  𝐷 )  =  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌 ,  𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑍  ↦  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) ) |