Step |
Hyp |
Ref |
Expression |
1 |
|
csboprabg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ { 〈 〈 𝑦 , 𝑧 〉 , 𝑑 〉 ∣ ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ 𝑑 = 𝐷 ) } = { 〈 〈 𝑦 , 𝑧 〉 , 𝑑 〉 ∣ [ 𝐴 / 𝑥 ] ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ 𝑑 = 𝐷 ) } ) |
2 |
|
sbcan |
⊢ ( [ 𝐴 / 𝑥 ] ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ 𝑑 = 𝐷 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ [ 𝐴 / 𝑥 ] 𝑑 = 𝐷 ) ) |
3 |
|
sbcan |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑌 ∧ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑍 ) ) |
4 |
|
sbcel12 |
⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑌 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ) |
5 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝑦 = 𝑦 ) |
6 |
5
|
eleq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ) ) |
7 |
4 6
|
syl5bb |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑌 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ) ) |
8 |
|
sbcel12 |
⊢ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑍 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) |
9 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝑧 = 𝑧 ) |
10 |
9
|
eleq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ↔ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) ) |
11 |
8 10
|
syl5bb |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑍 ↔ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) ) |
12 |
7 11
|
anbi12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑌 ∧ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑍 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) ) ) |
13 |
3 12
|
syl5bb |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) ) ) |
14 |
|
sbceq2g |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑑 = 𝐷 ↔ 𝑑 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |
15 |
13 14
|
anbi12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ [ 𝐴 / 𝑥 ] 𝑑 = 𝐷 ) ↔ ( ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) ∧ 𝑑 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) |
16 |
2 15
|
syl5bb |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ 𝑑 = 𝐷 ) ↔ ( ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) ∧ 𝑑 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) |
17 |
16
|
oprabbidv |
⊢ ( 𝐴 ∈ 𝑉 → { 〈 〈 𝑦 , 𝑧 〉 , 𝑑 〉 ∣ [ 𝐴 / 𝑥 ] ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ 𝑑 = 𝐷 ) } = { 〈 〈 𝑦 , 𝑧 〉 , 𝑑 〉 ∣ ( ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) ∧ 𝑑 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) } ) |
18 |
1 17
|
eqtrd |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ { 〈 〈 𝑦 , 𝑧 〉 , 𝑑 〉 ∣ ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ 𝑑 = 𝐷 ) } = { 〈 〈 𝑦 , 𝑧 〉 , 𝑑 〉 ∣ ( ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) ∧ 𝑑 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) } ) |
19 |
|
df-mpo |
⊢ ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐷 ) = { 〈 〈 𝑦 , 𝑧 〉 , 𝑑 〉 ∣ ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ 𝑑 = 𝐷 ) } |
20 |
19
|
csbeq2i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐷 ) = ⦋ 𝐴 / 𝑥 ⦌ { 〈 〈 𝑦 , 𝑧 〉 , 𝑑 〉 ∣ ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ 𝑑 = 𝐷 ) } |
21 |
|
df-mpo |
⊢ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 , 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ↦ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) = { 〈 〈 𝑦 , 𝑧 〉 , 𝑑 〉 ∣ ( ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ∧ 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) ∧ 𝑑 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) } |
22 |
18 20 21
|
3eqtr4g |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍 ↦ 𝐷 ) = ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 , 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ↦ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |