Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
|- ( U = V -> ( x e. U <-> x e. V ) ) |
2 |
1
|
anbi2d |
|- ( U = V -> ( ( n = 1o /\ x e. U ) <-> ( n = 1o /\ x e. V ) ) ) |
3 |
|
xpeq2 |
|- ( U = V -> ( _V X. U ) = ( _V X. V ) ) |
4 |
3
|
eleq2d |
|- ( U = V -> ( x e. ( _V X. U ) <-> x e. ( _V X. V ) ) ) |
5 |
4
|
ifbid |
|- ( U = V -> if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) |
6 |
2 5
|
ifbieq2d |
|- ( U = V -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) |
7 |
6
|
mpoeq3dv |
|- ( U = V -> ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ) |
8 |
|
rdgeq1 |
|- ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) -> rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) = rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ) |
9 |
7 8
|
syl |
|- ( U = V -> rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) = rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ) |
10 |
9
|
fveq1d |
|- ( U = V -> ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) |
11 |
10
|
eqeq2d |
|- ( U = V -> ( (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) <-> (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) ) |
12 |
11
|
anbi2d |
|- ( U = V -> ( ( N e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) <-> ( N e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) ) ) |
13 |
12
|
abbidv |
|- ( U = V -> { y | ( N e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) } = { y | ( N e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) } ) |
14 |
|
df-finxp |
|- ( U ^^ N ) = { y | ( N e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) } |
15 |
|
df-finxp |
|- ( V ^^ N ) = { y | ( N e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) } |
16 |
13 14 15
|
3eqtr4g |
|- ( U = V -> ( U ^^ N ) = ( V ^^ N ) ) |