| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq2 |  |-  ( U = V -> ( x e. U <-> x e. V ) ) | 
						
							| 2 | 1 | anbi2d |  |-  ( U = V -> ( ( n = 1o /\ x e. U ) <-> ( n = 1o /\ x e. V ) ) ) | 
						
							| 3 |  | xpeq2 |  |-  ( U = V -> ( _V X. U ) = ( _V X. V ) ) | 
						
							| 4 | 3 | eleq2d |  |-  ( U = V -> ( x e. ( _V X. U ) <-> x e. ( _V X. V ) ) ) | 
						
							| 5 | 4 | ifbid |  |-  ( U = V -> if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) = if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) | 
						
							| 6 | 2 5 | ifbieq2d |  |-  ( U = V -> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) = if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) | 
						
							| 7 | 6 | mpoeq3dv |  |-  ( U = V -> ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) ) | 
						
							| 8 |  | rdgeq1 |  |-  ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) = ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) -> rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) = rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( U = V -> rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) = rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ) | 
						
							| 10 | 9 | fveq1d |  |-  ( U = V -> ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) | 
						
							| 11 | 10 | eqeq2d |  |-  ( U = V -> ( (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) <-> (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) ) | 
						
							| 12 | 11 | anbi2d |  |-  ( U = V -> ( ( N e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) <-> ( N e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) ) ) | 
						
							| 13 | 12 | abbidv |  |-  ( U = V -> { y | ( N e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) } = { y | ( N e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) } ) | 
						
							| 14 |  | df-finxp |  |-  ( U ^^ N ) = { y | ( N e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. U ) , (/) , if ( x e. ( _V X. U ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) } | 
						
							| 15 |  | df-finxp |  |-  ( V ^^ N ) = { y | ( N e. _om /\ (/) = ( rec ( ( n e. _om , x e. _V |-> if ( ( n = 1o /\ x e. V ) , (/) , if ( x e. ( _V X. V ) , <. U. n , ( 1st ` x ) >. , <. n , x >. ) ) ) , <. N , y >. ) ` N ) ) } | 
						
							| 16 | 13 14 15 | 3eqtr4g |  |-  ( U = V -> ( U ^^ N ) = ( V ^^ N ) ) |