Metamath Proof Explorer


Theorem finxpeq1

Description: Equality theorem for Cartesian exponentiation. (Contributed by ML, 19-Oct-2020)

Ref Expression
Assertion finxpeq1 U = V U ↑↑ N = V ↑↑ N

Proof

Step Hyp Ref Expression
1 eleq2 U = V x U x V
2 1 anbi2d U = V n = 1 𝑜 x U n = 1 𝑜 x V
3 xpeq2 U = V V × U = V × V
4 3 eleq2d U = V x V × U x V × V
5 4 ifbid U = V if x V × U n 1 st x n x = if x V × V n 1 st x n x
6 2 5 ifbieq2d U = V if n = 1 𝑜 x U if x V × U n 1 st x n x = if n = 1 𝑜 x V if x V × V n 1 st x n x
7 6 mpoeq3dv U = V n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x = n ω , x V if n = 1 𝑜 x V if x V × V n 1 st x n x
8 rdgeq1 n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x = n ω , x V if n = 1 𝑜 x V if x V × V n 1 st x n x rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y = rec n ω , x V if n = 1 𝑜 x V if x V × V n 1 st x n x N y
9 7 8 syl U = V rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y = rec n ω , x V if n = 1 𝑜 x V if x V × V n 1 st x n x N y
10 9 fveq1d U = V rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y N = rec n ω , x V if n = 1 𝑜 x V if x V × V n 1 st x n x N y N
11 10 eqeq2d U = V = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y N = rec n ω , x V if n = 1 𝑜 x V if x V × V n 1 st x n x N y N
12 11 anbi2d U = V N ω = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y N N ω = rec n ω , x V if n = 1 𝑜 x V if x V × V n 1 st x n x N y N
13 12 abbidv U = V y | N ω = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y N = y | N ω = rec n ω , x V if n = 1 𝑜 x V if x V × V n 1 st x n x N y N
14 df-finxp U ↑↑ N = y | N ω = rec n ω , x V if n = 1 𝑜 x U if x V × U n 1 st x n x N y N
15 df-finxp V ↑↑ N = y | N ω = rec n ω , x V if n = 1 𝑜 x V if x V × V n 1 st x n x N y N
16 13 14 15 3eqtr4g U = V U ↑↑ N = V ↑↑ N