Metamath Proof Explorer


Definition df-funs

Description: Define the class of all functions. See elfuns for membership. (Contributed by Scott Fenton, 18-Feb-2013)

Ref Expression
Assertion df-funs 𝖥𝗎𝗇𝗌 = 𝒫 V × V 𝖥𝗂𝗑 E 1 st V I 2 nd E -1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfuns class 𝖥𝗎𝗇𝗌
1 cvv class V
2 1 1 cxp class V × V
3 2 cpw class 𝒫 V × V
4 cep class E
5 c1st class 1 st
6 cid class I
7 1 6 cdif class V I
8 c2nd class 2 nd
9 7 8 ccom class V I 2 nd
10 5 9 ctxp class 1 st V I 2 nd
11 4 ccnv class E -1
12 10 11 ccom class 1 st V I 2 nd E -1
13 4 12 ccom class E 1 st V I 2 nd E -1
14 13 cfix class 𝖥𝗂𝗑 E 1 st V I 2 nd E -1
15 3 14 cdif class 𝒫 V × V 𝖥𝗂𝗑 E 1 st V I 2 nd E -1
16 0 15 wceq wff 𝖥𝗎𝗇𝗌 = 𝒫 V × V 𝖥𝗂𝗑 E 1 st V I 2 nd E -1