Metamath Proof Explorer


Definition df-funs

Description: Define the class of all functions. See elfuns for membership. (Contributed by Scott Fenton, 18-Feb-2013)

Ref Expression
Assertion df-funs 𝖥𝗎𝗇𝗌=𝒫V×V𝖥𝗂𝗑E1stVI2ndE-1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfuns class𝖥𝗎𝗇𝗌
1 cvv classV
2 1 1 cxp classV×V
3 2 cpw class𝒫V×V
4 cep classE
5 c1st class1st
6 cid classI
7 1 6 cdif classVI
8 c2nd class2nd
9 7 8 ccom classVI2nd
10 5 9 ctxp class1stVI2nd
11 4 ccnv classE-1
12 10 11 ccom class1stVI2ndE-1
13 4 12 ccom classE1stVI2ndE-1
14 13 cfix class𝖥𝗂𝗑E1stVI2ndE-1
15 3 14 cdif class𝒫V×V𝖥𝗂𝗑E1stVI2ndE-1
16 0 15 wceq wff𝖥𝗎𝗇𝗌=𝒫V×V𝖥𝗂𝗑E1stVI2ndE-1