Description: Definition of generalized Petersen graphs according to Wikipedia "Generalized Petersen graph", 26-Aug-2025, https://en.wikipedia.org/wiki/Generalized_Petersen_graph : "In Watkins' notation, G ( n , k ) is a graph with vertex set { u_0, u_1, ... , u_n-1, v_0, v_1, ... , v_n-1 } and edge set { u_i u_i+1 , u_i v_i , v_i v_i+k | 0 <_ i <_ ( n - 1 ) } where subscripts are to be read modulo n and where k < ( n / 2 ) . Some authors use the notation GPG(n,k)."
Instead of n e. NN , we could restrict the first argument to n e. ( ZZ>=3 ) (i.e., 3 <_ n ), because for n <_ 2 , the definition is not meaningful (since then ( |^( n / 2 ) ) <_ 1 and therefore ( 1 ..^ ( |^( n / 2 ) ) ) = (/) , so that there would be no fitting second argument). (Contributed by AV, 26-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | df-gpg | Could not format assertion : No typesetting found for |- gPetersenGr = ( n e. NN , k e. ( 1 ..^ ( |^ ` ( n / 2 ) ) ) |-> { <. ( Base ` ndx ) , ( { 0 , 1 } X. ( 0 ..^ n ) ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ n ) ) | E. x e. ( 0 ..^ n ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } ) } ) >. } ) with typecode |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cgpg | Could not format gPetersenGr : No typesetting found for class gPetersenGr with typecode class | |
1 | vn | ||
2 | cn | ||
3 | vk | ||
4 | c1 | ||
5 | cfzo | ||
6 | cceil | ||
7 | 1 | cv | |
8 | cdiv | ||
9 | c2 | ||
10 | 7 9 8 | co | |
11 | 10 6 | cfv | |
12 | 4 11 5 | co | |
13 | cbs | ||
14 | cnx | ||
15 | 14 13 | cfv | |
16 | cc0 | ||
17 | 16 4 | cpr | |
18 | 16 7 5 | co | |
19 | 17 18 | cxp | |
20 | 15 19 | cop | |
21 | cedgf | ||
22 | 14 21 | cfv | |
23 | cid | ||
24 | ve | ||
25 | 19 | cpw | |
26 | vx | ||
27 | 24 | cv | |
28 | 26 | cv | |
29 | 16 28 | cop | |
30 | caddc | ||
31 | 28 4 30 | co | |
32 | cmo | ||
33 | 31 7 32 | co | |
34 | 16 33 | cop | |
35 | 29 34 | cpr | |
36 | 27 35 | wceq | |
37 | 4 28 | cop | |
38 | 29 37 | cpr | |
39 | 27 38 | wceq | |
40 | 3 | cv | |
41 | 28 40 30 | co | |
42 | 41 7 32 | co | |
43 | 4 42 | cop | |
44 | 37 43 | cpr | |
45 | 27 44 | wceq | |
46 | 36 39 45 | w3o | |
47 | 46 26 18 | wrex | |
48 | 47 24 25 | crab | |
49 | 23 48 | cres | |
50 | 22 49 | cop | |
51 | 20 50 | cpr | |
52 | 1 3 2 12 51 | cmpo | |
53 | 0 52 | wceq | Could not format gPetersenGr = ( n e. NN , k e. ( 1 ..^ ( |^ ` ( n / 2 ) ) ) |-> { <. ( Base ` ndx ) , ( { 0 , 1 } X. ( 0 ..^ n ) ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ n ) ) | E. x e. ( 0 ..^ n ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } ) } ) >. } ) : No typesetting found for wff gPetersenGr = ( n e. NN , k e. ( 1 ..^ ( |^ ` ( n / 2 ) ) ) |-> { <. ( Base ` ndx ) , ( { 0 , 1 } X. ( 0 ..^ n ) ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ n ) ) | E. x e. ( 0 ..^ n ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } ) } ) >. } ) with typecode wff |