Metamath Proof Explorer


Definition df-gpg

Description: Definition of generalized Petersen graphs according to Wikipedia "Generalized Petersen graph", 26-Aug-2025, https://en.wikipedia.org/wiki/Generalized_Petersen_graph : "In Watkins' notation, G ( n , k ) is a graph with vertex set { u_0, u_1, ... , u_n-1, v_0, v_1, ... , v_n-1 } and edge set { u_i u_i+1 , u_i v_i , v_i v_i+k | 0 <_ i <_ ( n - 1 ) } where subscripts are to be read modulo n and where k < ( n / 2 ) . Some authors use the notation GPG(n,k)."

Instead of n e. NN , we could restrict the first argument to n e. ( ZZ>=3 ) (i.e., 3 <_ n ), because for n <_ 2 , the definition is not meaningful (since then ( |^( n / 2 ) ) <_ 1 and therefore ( 1 ..^ ( |^( n / 2 ) ) ) = (/) , so that there would be no fitting second argument). (Contributed by AV, 26-Aug-2025)

Ref Expression
Assertion df-gpg Could not format assertion : No typesetting found for |- gPetersenGr = ( n e. NN , k e. ( 1 ..^ ( |^ ` ( n / 2 ) ) ) |-> { <. ( Base ` ndx ) , ( { 0 , 1 } X. ( 0 ..^ n ) ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ n ) ) | E. x e. ( 0 ..^ n ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } ) } ) >. } ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgpg Could not format gPetersenGr : No typesetting found for class gPetersenGr with typecode class
1 vn setvar n
2 cn class
3 vk setvar k
4 c1 class 1
5 cfzo class ..^
6 cceil class .
7 1 cv setvar n
8 cdiv class ÷
9 c2 class 2
10 7 9 8 co class n 2
11 10 6 cfv class n 2
12 4 11 5 co class 1 ..^ n 2
13 cbs class Base
14 cnx class ndx
15 14 13 cfv class Base ndx
16 cc0 class 0
17 16 4 cpr class 0 1
18 16 7 5 co class 0 ..^ n
19 17 18 cxp class 0 1 × 0 ..^ n
20 15 19 cop class Base ndx 0 1 × 0 ..^ n
21 cedgf class ef
22 14 21 cfv class ef ndx
23 cid class I
24 ve setvar e
25 19 cpw class 𝒫 0 1 × 0 ..^ n
26 vx setvar x
27 24 cv setvar e
28 26 cv setvar x
29 16 28 cop class 0 x
30 caddc class +
31 28 4 30 co class x + 1
32 cmo class mod
33 31 7 32 co class x + 1 mod n
34 16 33 cop class 0 x + 1 mod n
35 29 34 cpr class 0 x 0 x + 1 mod n
36 27 35 wceq wff e = 0 x 0 x + 1 mod n
37 4 28 cop class 1 x
38 29 37 cpr class 0 x 1 x
39 27 38 wceq wff e = 0 x 1 x
40 3 cv setvar k
41 28 40 30 co class x + k
42 41 7 32 co class x + k mod n
43 4 42 cop class 1 x + k mod n
44 37 43 cpr class 1 x 1 x + k mod n
45 27 44 wceq wff e = 1 x 1 x + k mod n
46 36 39 45 w3o wff e = 0 x 0 x + 1 mod n e = 0 x 1 x e = 1 x 1 x + k mod n
47 46 26 18 wrex wff x 0 ..^ n e = 0 x 0 x + 1 mod n e = 0 x 1 x e = 1 x 1 x + k mod n
48 47 24 25 crab class e 𝒫 0 1 × 0 ..^ n | x 0 ..^ n e = 0 x 0 x + 1 mod n e = 0 x 1 x e = 1 x 1 x + k mod n
49 23 48 cres class I e 𝒫 0 1 × 0 ..^ n | x 0 ..^ n e = 0 x 0 x + 1 mod n e = 0 x 1 x e = 1 x 1 x + k mod n
50 22 49 cop class ef ndx I e 𝒫 0 1 × 0 ..^ n | x 0 ..^ n e = 0 x 0 x + 1 mod n e = 0 x 1 x e = 1 x 1 x + k mod n
51 20 50 cpr class Base ndx 0 1 × 0 ..^ n ef ndx I e 𝒫 0 1 × 0 ..^ n | x 0 ..^ n e = 0 x 0 x + 1 mod n e = 0 x 1 x e = 1 x 1 x + k mod n
52 1 3 2 12 51 cmpo class n , k 1 ..^ n 2 Base ndx 0 1 × 0 ..^ n ef ndx I e 𝒫 0 1 × 0 ..^ n | x 0 ..^ n e = 0 x 0 x + 1 mod n e = 0 x 1 x e = 1 x 1 x + k mod n
53 0 52 wceq Could not format gPetersenGr = ( n e. NN , k e. ( 1 ..^ ( |^ ` ( n / 2 ) ) ) |-> { <. ( Base ` ndx ) , ( { 0 , 1 } X. ( 0 ..^ n ) ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ n ) ) | E. x e. ( 0 ..^ n ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } ) } ) >. } ) : No typesetting found for wff gPetersenGr = ( n e. NN , k e. ( 1 ..^ ( |^ ` ( n / 2 ) ) ) |-> { <. ( Base ` ndx ) , ( { 0 , 1 } X. ( 0 ..^ n ) ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ n ) ) | E. x e. ( 0 ..^ n ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } ) } ) >. } ) with typecode wff