Metamath Proof Explorer


Theorem gpgov

Description: The generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025)

Ref Expression
Hypotheses gpgov.j J = 1 ..^ N 2
gpgov.i I = 0 ..^ N
Assertion gpgov Could not format assertion : No typesetting found for |- ( ( N e. NN /\ K e. J ) -> ( N gPetersenGr K ) = { <. ( Base ` ndx ) , ( { 0 , 1 } X. I ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) >. } ) with typecode |-

Proof

Step Hyp Ref Expression
1 gpgov.j J = 1 ..^ N 2
2 gpgov.i I = 0 ..^ N
3 prex Base ndx 0 1 × I ef ndx I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N V
4 oveq2 n = N 0 ..^ n = 0 ..^ N
5 4 2 eqtr4di n = N 0 ..^ n = I
6 5 xpeq2d n = N 0 1 × 0 ..^ n = 0 1 × I
7 6 opeq2d n = N Base ndx 0 1 × 0 ..^ n = Base ndx 0 1 × I
8 7 adantr n = N k = K Base ndx 0 1 × 0 ..^ n = Base ndx 0 1 × I
9 6 pweqd n = N 𝒫 0 1 × 0 ..^ n = 𝒫 0 1 × I
10 9 adantr n = N k = K 𝒫 0 1 × 0 ..^ n = 𝒫 0 1 × I
11 5 rexeqdv n = N x 0 ..^ n e = 0 x 0 x + 1 mod n e = 0 x 1 x e = 1 x 1 x + k mod n x I e = 0 x 0 x + 1 mod n e = 0 x 1 x e = 1 x 1 x + k mod n
12 11 adantr n = N k = K x 0 ..^ n e = 0 x 0 x + 1 mod n e = 0 x 1 x e = 1 x 1 x + k mod n x I e = 0 x 0 x + 1 mod n e = 0 x 1 x e = 1 x 1 x + k mod n
13 oveq2 n = N x + 1 mod n = x + 1 mod N
14 13 opeq2d n = N 0 x + 1 mod n = 0 x + 1 mod N
15 14 preq2d n = N 0 x 0 x + 1 mod n = 0 x 0 x + 1 mod N
16 15 adantr n = N k = K 0 x 0 x + 1 mod n = 0 x 0 x + 1 mod N
17 16 eqeq2d n = N k = K e = 0 x 0 x + 1 mod n e = 0 x 0 x + 1 mod N
18 biidd n = N k = K e = 0 x 1 x e = 0 x 1 x
19 oveq2 k = K x + k = x + K
20 19 adantl n = N k = K x + k = x + K
21 simpl n = N k = K n = N
22 20 21 oveq12d n = N k = K x + k mod n = x + K mod N
23 22 opeq2d n = N k = K 1 x + k mod n = 1 x + K mod N
24 23 preq2d n = N k = K 1 x 1 x + k mod n = 1 x 1 x + K mod N
25 24 eqeq2d n = N k = K e = 1 x 1 x + k mod n e = 1 x 1 x + K mod N
26 17 18 25 3orbi123d n = N k = K e = 0 x 0 x + 1 mod n e = 0 x 1 x e = 1 x 1 x + k mod n e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
27 26 rexbidv n = N k = K x I e = 0 x 0 x + 1 mod n e = 0 x 1 x e = 1 x 1 x + k mod n x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
28 12 27 bitrd n = N k = K x 0 ..^ n e = 0 x 0 x + 1 mod n e = 0 x 1 x e = 1 x 1 x + k mod n x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
29 10 28 rabeqbidv n = N k = K e 𝒫 0 1 × 0 ..^ n | x 0 ..^ n e = 0 x 0 x + 1 mod n e = 0 x 1 x e = 1 x 1 x + k mod n = e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
30 29 reseq2d n = N k = K I e 𝒫 0 1 × 0 ..^ n | x 0 ..^ n e = 0 x 0 x + 1 mod n e = 0 x 1 x e = 1 x 1 x + k mod n = I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
31 30 opeq2d n = N k = K ef ndx I e 𝒫 0 1 × 0 ..^ n | x 0 ..^ n e = 0 x 0 x + 1 mod n e = 0 x 1 x e = 1 x 1 x + k mod n = ef ndx I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
32 8 31 preq12d n = N k = K Base ndx 0 1 × 0 ..^ n ef ndx I e 𝒫 0 1 × 0 ..^ n | x 0 ..^ n e = 0 x 0 x + 1 mod n e = 0 x 1 x e = 1 x 1 x + k mod n = Base ndx 0 1 × I ef ndx I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
33 fvoveq1 n = N n 2 = N 2
34 33 oveq2d n = N 1 ..^ n 2 = 1 ..^ N 2
35 34 1 eqtr4di n = N 1 ..^ n 2 = J
36 df-gpg Could not format gPetersenGr = ( n e. NN , k e. ( 1 ..^ ( |^ ` ( n / 2 ) ) ) |-> { <. ( Base ` ndx ) , ( { 0 , 1 } X. ( 0 ..^ n ) ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ n ) ) | E. x e. ( 0 ..^ n ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } ) } ) >. } ) : No typesetting found for |- gPetersenGr = ( n e. NN , k e. ( 1 ..^ ( |^ ` ( n / 2 ) ) ) |-> { <. ( Base ` ndx ) , ( { 0 , 1 } X. ( 0 ..^ n ) ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ n ) ) | E. x e. ( 0 ..^ n ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod n ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + k ) mod n ) >. } ) } ) >. } ) with typecode |-
37 32 35 36 ovmpox Could not format ( ( N e. NN /\ K e. J /\ { <. ( Base ` ndx ) , ( { 0 , 1 } X. I ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) >. } e. _V ) -> ( N gPetersenGr K ) = { <. ( Base ` ndx ) , ( { 0 , 1 } X. I ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) >. } ) : No typesetting found for |- ( ( N e. NN /\ K e. J /\ { <. ( Base ` ndx ) , ( { 0 , 1 } X. I ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) >. } e. _V ) -> ( N gPetersenGr K ) = { <. ( Base ` ndx ) , ( { 0 , 1 } X. I ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) >. } ) with typecode |-
38 3 37 mp3an3 Could not format ( ( N e. NN /\ K e. J ) -> ( N gPetersenGr K ) = { <. ( Base ` ndx ) , ( { 0 , 1 } X. I ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) >. } ) : No typesetting found for |- ( ( N e. NN /\ K e. J ) -> ( N gPetersenGr K ) = { <. ( Base ` ndx ) , ( { 0 , 1 } X. I ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) >. } ) with typecode |-