Metamath Proof Explorer


Definition df-gzpow

Description: The Godel-set version of the Axiom of Power Sets. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-gzpow AxPow=𝑔1𝑜𝑔2𝑜𝑔1𝑜1𝑜𝑔2𝑜𝑔1𝑜𝑔𝑔2𝑜𝑔1𝑜

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgzp classAxPow
1 c1o class1𝑜
2 c2o class2𝑜
3 cgoe class𝑔
4 1 2 3 co class1𝑜𝑔2𝑜
5 cgob class𝑔
6 c0 class
7 1 6 3 co class1𝑜𝑔
8 4 7 5 co class1𝑜𝑔2𝑜𝑔1𝑜𝑔
9 8 1 cgol class𝑔1𝑜1𝑜𝑔2𝑜𝑔1𝑜𝑔
10 cgoi class𝑔
11 2 1 3 co class2𝑜𝑔1𝑜
12 9 11 10 co class𝑔1𝑜1𝑜𝑔2𝑜𝑔1𝑜𝑔𝑔2𝑜𝑔1𝑜
13 12 2 cgol class𝑔2𝑜𝑔1𝑜1𝑜𝑔2𝑜𝑔1𝑜𝑔𝑔2𝑜𝑔1𝑜
14 13 1 cgox class𝑔1𝑜𝑔2𝑜𝑔1𝑜1𝑜𝑔2𝑜𝑔1𝑜𝑔𝑔2𝑜𝑔1𝑜
15 0 14 wceq wffAxPow=𝑔1𝑜𝑔2𝑜𝑔1𝑜1𝑜𝑔2𝑜𝑔1𝑜𝑔𝑔2𝑜𝑔1𝑜