Metamath Proof Explorer


Definition df-gzrep

Description: The Godel-set version of the Axiom Scheme of Replacement. Since this is a scheme and not a single axiom, it manifests as a function on wffs, each giving rise to a different axiom. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-gzrep AxRep=uFmlaω𝑔3𝑜𝑔1𝑜𝑔2𝑜𝑔1𝑜u𝑔2𝑜=𝑔1𝑜𝑔𝑔1𝑜𝑔2𝑜2𝑜𝑔1𝑜𝑔𝑔3𝑜3𝑜𝑔𝑔𝑔1𝑜u

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgzr classAxRep
1 vu setvaru
2 cfmla classFmla
3 com classω
4 3 2 cfv classFmlaω
5 c3o class3𝑜
6 c1o class1𝑜
7 c2o class2𝑜
8 1 cv setvaru
9 8 6 cgol class𝑔1𝑜u
10 cgoi class𝑔
11 cgoq class=𝑔
12 7 6 11 co class2𝑜=𝑔1𝑜
13 9 12 10 co class𝑔1𝑜u𝑔2𝑜=𝑔1𝑜
14 13 7 cgol class𝑔2𝑜𝑔1𝑜u𝑔2𝑜=𝑔1𝑜
15 14 6 cgox class𝑔1𝑜𝑔2𝑜𝑔1𝑜u𝑔2𝑜=𝑔1𝑜
16 15 5 cgol class𝑔3𝑜𝑔1𝑜𝑔2𝑜𝑔1𝑜u𝑔2𝑜=𝑔1𝑜
17 cgoe class𝑔
18 7 6 17 co class2𝑜𝑔1𝑜
19 cgob class𝑔
20 c0 class
21 5 20 17 co class3𝑜𝑔
22 cgoa class𝑔
23 21 9 22 co class3𝑜𝑔𝑔𝑔1𝑜u
24 23 5 cgox class𝑔3𝑜3𝑜𝑔𝑔𝑔1𝑜u
25 18 24 19 co class2𝑜𝑔1𝑜𝑔𝑔3𝑜3𝑜𝑔𝑔𝑔1𝑜u
26 25 7 cgol class𝑔2𝑜2𝑜𝑔1𝑜𝑔𝑔3𝑜3𝑜𝑔𝑔𝑔1𝑜u
27 26 6 cgol class𝑔1𝑜𝑔2𝑜2𝑜𝑔1𝑜𝑔𝑔3𝑜3𝑜𝑔𝑔𝑔1𝑜u
28 16 27 10 co class𝑔3𝑜𝑔1𝑜𝑔2𝑜𝑔1𝑜u𝑔2𝑜=𝑔1𝑜𝑔𝑔1𝑜𝑔2𝑜2𝑜𝑔1𝑜𝑔𝑔3𝑜3𝑜𝑔𝑔𝑔1𝑜u
29 1 4 28 cmpt classuFmlaω𝑔3𝑜𝑔1𝑜𝑔2𝑜𝑔1𝑜u𝑔2𝑜=𝑔1𝑜𝑔𝑔1𝑜𝑔2𝑜2𝑜𝑔1𝑜𝑔𝑔3𝑜3𝑜𝑔𝑔𝑔1𝑜u
30 0 29 wceq wffAxRep=uFmlaω𝑔3𝑜𝑔1𝑜𝑔2𝑜𝑔1𝑜u𝑔2𝑜=𝑔1𝑜𝑔𝑔1𝑜𝑔2𝑜2𝑜𝑔1𝑜𝑔𝑔3𝑜3𝑜𝑔𝑔𝑔1𝑜u