Metamath Proof Explorer


Definition df-gzrep

Description: The Godel-set version of the Axiom Scheme of Replacement. Since this is a scheme and not a single axiom, it manifests as a function on wffs, each giving rise to a different axiom. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-gzrep
|- AxRep = ( u e. ( Fmla ` _om ) |-> ( A.g 3o E.g 1o A.g 2o ( A.g 1o u ->g ( 2o =g 1o ) ) ->g A.g 1o A.g 2o ( ( 2o e.g 1o ) <->g E.g 3o ( ( 3o e.g (/) ) /\g A.g 1o u ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgzr
 |-  AxRep
1 vu
 |-  u
2 cfmla
 |-  Fmla
3 com
 |-  _om
4 3 2 cfv
 |-  ( Fmla ` _om )
5 c3o
 |-  3o
6 c1o
 |-  1o
7 c2o
 |-  2o
8 1 cv
 |-  u
9 8 6 cgol
 |-  A.g 1o u
10 cgoi
 |-  ->g
11 cgoq
 |-  =g
12 7 6 11 co
 |-  ( 2o =g 1o )
13 9 12 10 co
 |-  ( A.g 1o u ->g ( 2o =g 1o ) )
14 13 7 cgol
 |-  A.g 2o ( A.g 1o u ->g ( 2o =g 1o ) )
15 14 6 cgox
 |-  E.g 1o A.g 2o ( A.g 1o u ->g ( 2o =g 1o ) )
16 15 5 cgol
 |-  A.g 3o E.g 1o A.g 2o ( A.g 1o u ->g ( 2o =g 1o ) )
17 cgoe
 |-  e.g
18 7 6 17 co
 |-  ( 2o e.g 1o )
19 cgob
 |-  <->g
20 c0
 |-  (/)
21 5 20 17 co
 |-  ( 3o e.g (/) )
22 cgoa
 |-  /\g
23 21 9 22 co
 |-  ( ( 3o e.g (/) ) /\g A.g 1o u )
24 23 5 cgox
 |-  E.g 3o ( ( 3o e.g (/) ) /\g A.g 1o u )
25 18 24 19 co
 |-  ( ( 2o e.g 1o ) <->g E.g 3o ( ( 3o e.g (/) ) /\g A.g 1o u ) )
26 25 7 cgol
 |-  A.g 2o ( ( 2o e.g 1o ) <->g E.g 3o ( ( 3o e.g (/) ) /\g A.g 1o u ) )
27 26 6 cgol
 |-  A.g 1o A.g 2o ( ( 2o e.g 1o ) <->g E.g 3o ( ( 3o e.g (/) ) /\g A.g 1o u ) )
28 16 27 10 co
 |-  ( A.g 3o E.g 1o A.g 2o ( A.g 1o u ->g ( 2o =g 1o ) ) ->g A.g 1o A.g 2o ( ( 2o e.g 1o ) <->g E.g 3o ( ( 3o e.g (/) ) /\g A.g 1o u ) ) )
29 1 4 28 cmpt
 |-  ( u e. ( Fmla ` _om ) |-> ( A.g 3o E.g 1o A.g 2o ( A.g 1o u ->g ( 2o =g 1o ) ) ->g A.g 1o A.g 2o ( ( 2o e.g 1o ) <->g E.g 3o ( ( 3o e.g (/) ) /\g A.g 1o u ) ) ) )
30 0 29 wceq
 |-  AxRep = ( u e. ( Fmla ` _om ) |-> ( A.g 3o E.g 1o A.g 2o ( A.g 1o u ->g ( 2o =g 1o ) ) ->g A.g 1o A.g 2o ( ( 2o e.g 1o ) <->g E.g 3o ( ( 3o e.g (/) ) /\g A.g 1o u ) ) ) )