| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cgzr |
|- AxRep |
| 1 |
|
vu |
|- u |
| 2 |
|
cfmla |
|- Fmla |
| 3 |
|
com |
|- _om |
| 4 |
3 2
|
cfv |
|- ( Fmla ` _om ) |
| 5 |
|
c3o |
|- 3o |
| 6 |
|
c1o |
|- 1o |
| 7 |
|
c2o |
|- 2o |
| 8 |
1
|
cv |
|- u |
| 9 |
8 6
|
cgol |
|- A.g 1o u |
| 10 |
|
cgoi |
|- ->g |
| 11 |
|
cgoq |
|- =g |
| 12 |
7 6 11
|
co |
|- ( 2o =g 1o ) |
| 13 |
9 12 10
|
co |
|- ( A.g 1o u ->g ( 2o =g 1o ) ) |
| 14 |
13 7
|
cgol |
|- A.g 2o ( A.g 1o u ->g ( 2o =g 1o ) ) |
| 15 |
14 6
|
cgox |
|- E.g 1o A.g 2o ( A.g 1o u ->g ( 2o =g 1o ) ) |
| 16 |
15 5
|
cgol |
|- A.g 3o E.g 1o A.g 2o ( A.g 1o u ->g ( 2o =g 1o ) ) |
| 17 |
|
cgoe |
|- e.g |
| 18 |
7 6 17
|
co |
|- ( 2o e.g 1o ) |
| 19 |
|
cgob |
|- <->g |
| 20 |
|
c0 |
|- (/) |
| 21 |
5 20 17
|
co |
|- ( 3o e.g (/) ) |
| 22 |
|
cgoa |
|- /\g |
| 23 |
21 9 22
|
co |
|- ( ( 3o e.g (/) ) /\g A.g 1o u ) |
| 24 |
23 5
|
cgox |
|- E.g 3o ( ( 3o e.g (/) ) /\g A.g 1o u ) |
| 25 |
18 24 19
|
co |
|- ( ( 2o e.g 1o ) <->g E.g 3o ( ( 3o e.g (/) ) /\g A.g 1o u ) ) |
| 26 |
25 7
|
cgol |
|- A.g 2o ( ( 2o e.g 1o ) <->g E.g 3o ( ( 3o e.g (/) ) /\g A.g 1o u ) ) |
| 27 |
26 6
|
cgol |
|- A.g 1o A.g 2o ( ( 2o e.g 1o ) <->g E.g 3o ( ( 3o e.g (/) ) /\g A.g 1o u ) ) |
| 28 |
16 27 10
|
co |
|- ( A.g 3o E.g 1o A.g 2o ( A.g 1o u ->g ( 2o =g 1o ) ) ->g A.g 1o A.g 2o ( ( 2o e.g 1o ) <->g E.g 3o ( ( 3o e.g (/) ) /\g A.g 1o u ) ) ) |
| 29 |
1 4 28
|
cmpt |
|- ( u e. ( Fmla ` _om ) |-> ( A.g 3o E.g 1o A.g 2o ( A.g 1o u ->g ( 2o =g 1o ) ) ->g A.g 1o A.g 2o ( ( 2o e.g 1o ) <->g E.g 3o ( ( 3o e.g (/) ) /\g A.g 1o u ) ) ) ) |
| 30 |
0 29
|
wceq |
|- AxRep = ( u e. ( Fmla ` _om ) |-> ( A.g 3o E.g 1o A.g 2o ( A.g 1o u ->g ( 2o =g 1o ) ) ->g A.g 1o A.g 2o ( ( 2o e.g 1o ) <->g E.g 3o ( ( 3o e.g (/) ) /\g A.g 1o u ) ) ) ) |