Metamath Proof Explorer


Definition df-gzrep

Description: The Godel-set version of the Axiom Scheme of Replacement. Since this is a scheme and not a single axiom, it manifests as a function on wffs, each giving rise to a different axiom. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-gzrep AxRep = ( 𝑢 ∈ ( Fmla ‘ ω ) ↦ ( ∀𝑔 3o𝑔 1o𝑔 2o ( ∀𝑔 1o 𝑢𝑔 ( 2o =𝑔 1o ) ) →𝑔𝑔 1o𝑔 2o ( ( 2o𝑔 1o ) ↔𝑔𝑔 3o ( ( 3o𝑔 ∅ ) ∧𝑔𝑔 1o 𝑢 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgzr AxRep
1 vu 𝑢
2 cfmla Fmla
3 com ω
4 3 2 cfv ( Fmla ‘ ω )
5 c3o 3o
6 c1o 1o
7 c2o 2o
8 1 cv 𝑢
9 8 6 cgol 𝑔 1o 𝑢
10 cgoi 𝑔
11 cgoq =𝑔
12 7 6 11 co ( 2o =𝑔 1o )
13 9 12 10 co ( ∀𝑔 1o 𝑢𝑔 ( 2o =𝑔 1o ) )
14 13 7 cgol 𝑔 2o ( ∀𝑔 1o 𝑢𝑔 ( 2o =𝑔 1o ) )
15 14 6 cgox 𝑔 1o𝑔 2o ( ∀𝑔 1o 𝑢𝑔 ( 2o =𝑔 1o ) )
16 15 5 cgol 𝑔 3o𝑔 1o𝑔 2o ( ∀𝑔 1o 𝑢𝑔 ( 2o =𝑔 1o ) )
17 cgoe 𝑔
18 7 6 17 co ( 2o𝑔 1o )
19 cgob 𝑔
20 c0
21 5 20 17 co ( 3o𝑔 ∅ )
22 cgoa 𝑔
23 21 9 22 co ( ( 3o𝑔 ∅ ) ∧𝑔𝑔 1o 𝑢 )
24 23 5 cgox 𝑔 3o ( ( 3o𝑔 ∅ ) ∧𝑔𝑔 1o 𝑢 )
25 18 24 19 co ( ( 2o𝑔 1o ) ↔𝑔𝑔 3o ( ( 3o𝑔 ∅ ) ∧𝑔𝑔 1o 𝑢 ) )
26 25 7 cgol 𝑔 2o ( ( 2o𝑔 1o ) ↔𝑔𝑔 3o ( ( 3o𝑔 ∅ ) ∧𝑔𝑔 1o 𝑢 ) )
27 26 6 cgol 𝑔 1o𝑔 2o ( ( 2o𝑔 1o ) ↔𝑔𝑔 3o ( ( 3o𝑔 ∅ ) ∧𝑔𝑔 1o 𝑢 ) )
28 16 27 10 co ( ∀𝑔 3o𝑔 1o𝑔 2o ( ∀𝑔 1o 𝑢𝑔 ( 2o =𝑔 1o ) ) →𝑔𝑔 1o𝑔 2o ( ( 2o𝑔 1o ) ↔𝑔𝑔 3o ( ( 3o𝑔 ∅ ) ∧𝑔𝑔 1o 𝑢 ) ) )
29 1 4 28 cmpt ( 𝑢 ∈ ( Fmla ‘ ω ) ↦ ( ∀𝑔 3o𝑔 1o𝑔 2o ( ∀𝑔 1o 𝑢𝑔 ( 2o =𝑔 1o ) ) →𝑔𝑔 1o𝑔 2o ( ( 2o𝑔 1o ) ↔𝑔𝑔 3o ( ( 3o𝑔 ∅ ) ∧𝑔𝑔 1o 𝑢 ) ) ) )
30 0 29 wceq AxRep = ( 𝑢 ∈ ( Fmla ‘ ω ) ↦ ( ∀𝑔 3o𝑔 1o𝑔 2o ( ∀𝑔 1o 𝑢𝑔 ( 2o =𝑔 1o ) ) →𝑔𝑔 1o𝑔 2o ( ( 2o𝑔 1o ) ↔𝑔𝑔 3o ( ( 3o𝑔 ∅ ) ∧𝑔𝑔 1o 𝑢 ) ) ) )