Step |
Hyp |
Ref |
Expression |
0 |
|
cgzr |
⊢ AxRep |
1 |
|
vu |
⊢ 𝑢 |
2 |
|
cfmla |
⊢ Fmla |
3 |
|
com |
⊢ ω |
4 |
3 2
|
cfv |
⊢ ( Fmla ‘ ω ) |
5 |
|
c3o |
⊢ 3o |
6 |
|
c1o |
⊢ 1o |
7 |
|
c2o |
⊢ 2o |
8 |
1
|
cv |
⊢ 𝑢 |
9 |
8 6
|
cgol |
⊢ ∀𝑔 1o 𝑢 |
10 |
|
cgoi |
⊢ →𝑔 |
11 |
|
cgoq |
⊢ =𝑔 |
12 |
7 6 11
|
co |
⊢ ( 2o =𝑔 1o ) |
13 |
9 12 10
|
co |
⊢ ( ∀𝑔 1o 𝑢 →𝑔 ( 2o =𝑔 1o ) ) |
14 |
13 7
|
cgol |
⊢ ∀𝑔 2o ( ∀𝑔 1o 𝑢 →𝑔 ( 2o =𝑔 1o ) ) |
15 |
14 6
|
cgox |
⊢ ∃𝑔 1o ∀𝑔 2o ( ∀𝑔 1o 𝑢 →𝑔 ( 2o =𝑔 1o ) ) |
16 |
15 5
|
cgol |
⊢ ∀𝑔 3o ∃𝑔 1o ∀𝑔 2o ( ∀𝑔 1o 𝑢 →𝑔 ( 2o =𝑔 1o ) ) |
17 |
|
cgoe |
⊢ ∈𝑔 |
18 |
7 6 17
|
co |
⊢ ( 2o ∈𝑔 1o ) |
19 |
|
cgob |
⊢ ↔𝑔 |
20 |
|
c0 |
⊢ ∅ |
21 |
5 20 17
|
co |
⊢ ( 3o ∈𝑔 ∅ ) |
22 |
|
cgoa |
⊢ ∧𝑔 |
23 |
21 9 22
|
co |
⊢ ( ( 3o ∈𝑔 ∅ ) ∧𝑔 ∀𝑔 1o 𝑢 ) |
24 |
23 5
|
cgox |
⊢ ∃𝑔 3o ( ( 3o ∈𝑔 ∅ ) ∧𝑔 ∀𝑔 1o 𝑢 ) |
25 |
18 24 19
|
co |
⊢ ( ( 2o ∈𝑔 1o ) ↔𝑔 ∃𝑔 3o ( ( 3o ∈𝑔 ∅ ) ∧𝑔 ∀𝑔 1o 𝑢 ) ) |
26 |
25 7
|
cgol |
⊢ ∀𝑔 2o ( ( 2o ∈𝑔 1o ) ↔𝑔 ∃𝑔 3o ( ( 3o ∈𝑔 ∅ ) ∧𝑔 ∀𝑔 1o 𝑢 ) ) |
27 |
26 6
|
cgol |
⊢ ∀𝑔 1o ∀𝑔 2o ( ( 2o ∈𝑔 1o ) ↔𝑔 ∃𝑔 3o ( ( 3o ∈𝑔 ∅ ) ∧𝑔 ∀𝑔 1o 𝑢 ) ) |
28 |
16 27 10
|
co |
⊢ ( ∀𝑔 3o ∃𝑔 1o ∀𝑔 2o ( ∀𝑔 1o 𝑢 →𝑔 ( 2o =𝑔 1o ) ) →𝑔 ∀𝑔 1o ∀𝑔 2o ( ( 2o ∈𝑔 1o ) ↔𝑔 ∃𝑔 3o ( ( 3o ∈𝑔 ∅ ) ∧𝑔 ∀𝑔 1o 𝑢 ) ) ) |
29 |
1 4 28
|
cmpt |
⊢ ( 𝑢 ∈ ( Fmla ‘ ω ) ↦ ( ∀𝑔 3o ∃𝑔 1o ∀𝑔 2o ( ∀𝑔 1o 𝑢 →𝑔 ( 2o =𝑔 1o ) ) →𝑔 ∀𝑔 1o ∀𝑔 2o ( ( 2o ∈𝑔 1o ) ↔𝑔 ∃𝑔 3o ( ( 3o ∈𝑔 ∅ ) ∧𝑔 ∀𝑔 1o 𝑢 ) ) ) ) |
30 |
0 29
|
wceq |
⊢ AxRep = ( 𝑢 ∈ ( Fmla ‘ ω ) ↦ ( ∀𝑔 3o ∃𝑔 1o ∀𝑔 2o ( ∀𝑔 1o 𝑢 →𝑔 ( 2o =𝑔 1o ) ) →𝑔 ∀𝑔 1o ∀𝑔 2o ( ( 2o ∈𝑔 1o ) ↔𝑔 ∃𝑔 3o ( ( 3o ∈𝑔 ∅ ) ∧𝑔 ∀𝑔 1o 𝑢 ) ) ) ) |