Metamath Proof Explorer


Definition df-gzun

Description: The Godel-set version of the Axiom of Unions. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-gzun AxUn=𝑔1𝑜𝑔2𝑜𝑔1𝑜2𝑜𝑔1𝑜𝑔1𝑜𝑔𝑔2𝑜𝑔1𝑜

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgzu classAxUn
1 c1o class1𝑜
2 c2o class2𝑜
3 cgoe class𝑔
4 2 1 3 co class2𝑜𝑔1𝑜
5 cgoa class𝑔
6 c0 class
7 1 6 3 co class1𝑜𝑔
8 4 7 5 co class2𝑜𝑔1𝑜𝑔1𝑜𝑔
9 8 1 cgox class𝑔1𝑜2𝑜𝑔1𝑜𝑔1𝑜𝑔
10 cgoi class𝑔
11 9 4 10 co class𝑔1𝑜2𝑜𝑔1𝑜𝑔1𝑜𝑔𝑔2𝑜𝑔1𝑜
12 11 2 cgol class𝑔2𝑜𝑔1𝑜2𝑜𝑔1𝑜𝑔1𝑜𝑔𝑔2𝑜𝑔1𝑜
13 12 1 cgox class𝑔1𝑜𝑔2𝑜𝑔1𝑜2𝑜𝑔1𝑜𝑔1𝑜𝑔𝑔2𝑜𝑔1𝑜
14 0 13 wceq wffAxUn=𝑔1𝑜𝑔2𝑜𝑔1𝑜2𝑜𝑔1𝑜𝑔1𝑜𝑔𝑔2𝑜𝑔1𝑜