Database  
				REAL AND COMPLEX NUMBERS  
				Elementary integer functions  
				The ` # ` (set size) function  
				df-hash  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Define the set size function #  , which gives the cardinality of a
     finite set as a member of NN0  , and assigns all infinite sets the
     value +oo  .  For example, ( # { 0 , 1 , 2 } ) = 3 
     ( ex-hash  ).  (Contributed by Paul Chapman , 22-Jun-2011) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
				
					 
					Assertion 
					df-hash  
					  ⊢   .   =      rec  ⁡     x  ∈  V  ⟼  x  +   1        0       ↾   ω    ∘  card     ∪    V  ∖  Fin     ×   +∞                
				 
			
		 
		 
			
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0  
							
								
							 
							chash  
							   class  .      
						 
						
							1  
							
								
							 
							vx  
							   setvar  x      
						 
						
							2  
							
								
							 
							cvv  
							   class  V      
						 
						
							3  
							
								1 
							 
							cv  
							   setvar  x      
						 
						
							4  
							
								
							 
							caddc  
							   class  +      
						 
						
							5  
							
								
							 
							c1  
							   class   1       
						 
						
							6  
							
								3  5  4 
							 
							co  
							   class  x  +   1       
						 
						
							7  
							
								1  2  6 
							 
							cmpt  
							   class    x  ∈  V  ⟼  x  +   1           
						 
						
							8  
							
								
							 
							cc0  
							   class   0       
						 
						
							9  
							
								7  8 
							 
							crdg  
							   class   rec  ⁡     x  ∈  V  ⟼  x  +   1        0           
						 
						
							10  
							
								
							 
							com  
							   class  ω      
						 
						
							11  
							
								9  10 
							 
							cres  
							   class    rec  ⁡     x  ∈  V  ⟼  x  +   1        0       ↾   ω       
						 
						
							12  
							
								
							 
							ccrd  
							   class  card      
						 
						
							13  
							
								11  12 
							 
							ccom  
							   class     rec  ⁡     x  ∈  V  ⟼  x  +   1        0       ↾   ω    ∘  card        
						 
						
							14  
							
								
							 
							cfn  
							   class  Fin      
						 
						
							15  
							
								2  14 
							 
							cdif  
							   class   V  ∖  Fin        
						 
						
							16  
							
								
							 
							cpnf  
							   class  +∞      
						 
						
							17  
							
								16 
							 
							csn  
							   class   +∞        
						 
						
							18  
							
								15  17 
							 
							cxp  
							   class    V  ∖  Fin     ×   +∞          
						 
						
							19  
							
								13  18 
							 
							cun  
							   class      rec  ⁡     x  ∈  V  ⟼  x  +   1        0       ↾   ω    ∘  card     ∪    V  ∖  Fin     ×   +∞             
						 
						
							20  
							
								0  19 
							 
							wceq  
							   wff   .   =      rec  ⁡     x  ∈  V  ⟼  x  +   1        0       ↾   ω    ∘  card     ∪    V  ∖  Fin     ×   +∞