Metamath Proof Explorer


Definition df-hfmul

Description: Define the scalar product with a Hilbert space functional. Definition of Beran p. 111. (Contributed by NM, 23-May-2006) (New usage is discouraged.)

Ref Expression
Assertion df-hfmul ·fn=f,gxfgx

Detailed syntax breakdown

Step Hyp Ref Expression
0 chft class·fn
1 vf setvarf
2 cc class
3 vg setvarg
4 cmap class𝑚
5 chba class
6 2 5 4 co class
7 vx setvarx
8 1 cv setvarf
9 cmul class×
10 3 cv setvarg
11 7 cv setvarx
12 11 10 cfv classgx
13 8 12 9 co classfgx
14 7 5 13 cmpt classxfgx
15 1 3 2 6 14 cmpo classf,gxfgx
16 0 15 wceq wff·fn=f,gxfgx