Metamath Proof Explorer


Definition df-idlsrg

Description: Define a structure for the ideals of a ring. (Contributed by Thierry Arnoux, 21-Jan-2024)

Ref Expression
Assertion df-idlsrg Could not format assertion : No typesetting found for |- IDLsrg = ( r e. _V |-> [_ ( LIdeal ` r ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cidlsrg Could not format IDLsrg : No typesetting found for class IDLsrg with typecode class
1 vr setvarr
2 cvv classV
3 clidl classLIdeal
4 1 cv setvarr
5 4 3 cfv classLIdealr
6 vb setvarb
7 cbs classBase
8 cnx classndx
9 8 7 cfv classBasendx
10 6 cv setvarb
11 9 10 cop classBasendxb
12 cplusg class+𝑔
13 8 12 cfv class+ndx
14 clsm classLSSum
15 4 14 cfv classLSSumr
16 13 15 cop class+ndxLSSumr
17 cmulr class𝑟
18 8 17 cfv classndx
19 vi setvari
20 vj setvarj
21 crsp classRSpan
22 4 21 cfv classRSpanr
23 19 cv setvari
24 cmgp classmulGrp
25 4 24 cfv classmulGrpr
26 25 14 cfv classLSSummulGrpr
27 20 cv setvarj
28 23 27 26 co classiLSSummulGrprj
29 28 22 cfv classRSpanriLSSummulGrprj
30 19 20 10 10 29 cmpo classib,jbRSpanriLSSummulGrprj
31 18 30 cop classndxib,jbRSpanriLSSummulGrprj
32 11 16 31 ctp classBasendxb+ndxLSSumrndxib,jbRSpanriLSSummulGrprj
33 cts classTopSet
34 8 33 cfv classTopSetndx
35 23 27 wss wffij
36 35 wn wff¬ij
37 36 20 10 crab classjb|¬ij
38 19 10 37 cmpt classibjb|¬ij
39 38 crn classranibjb|¬ij
40 34 39 cop classTopSetndxranibjb|¬ij
41 cple classle
42 8 41 cfv classndx
43 23 27 cpr classij
44 43 10 wss wffijb
45 44 35 wa wffijbij
46 45 19 20 copab classij|ijbij
47 42 46 cop classndxij|ijbij
48 40 47 cpr classTopSetndxranibjb|¬ijndxij|ijbij
49 32 48 cun classBasendxb+ndxLSSumrndxib,jbRSpanriLSSummulGrprjTopSetndxranibjb|¬ijndxij|ijbij
50 6 5 49 csb classLIdealr/bBasendxb+ndxLSSumrndxib,jbRSpanriLSSummulGrprjTopSetndxranibjb|¬ijndxij|ijbij
51 1 2 50 cmpt classrVLIdealr/bBasendxb+ndxLSSumrndxib,jbRSpanriLSSummulGrprjTopSetndxranibjb|¬ijndxij|ijbij
52 0 51 wceq Could not format IDLsrg = ( r e. _V |-> [_ ( LIdeal ` r ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) ) : No typesetting found for wff IDLsrg = ( r e. _V |-> [_ ( LIdeal ` r ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) ) with typecode wff