Metamath Proof Explorer


Definition df-idlsrg

Description: Define a structure for the ideals of a ring. (Contributed by Thierry Arnoux, 21-Jan-2024)

Ref Expression
Assertion df-idlsrg Could not format assertion : No typesetting found for |- IDLsrg = ( r e. _V |-> [_ ( LIdeal ` r ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cidlsrg Could not format IDLsrg : No typesetting found for class IDLsrg with typecode class
1 vr setvar r
2 cvv class V
3 clidl class LIdeal
4 1 cv setvar r
5 4 3 cfv class LIdeal r
6 vb setvar b
7 cbs class Base
8 cnx class ndx
9 8 7 cfv class Base ndx
10 6 cv setvar b
11 9 10 cop class Base ndx b
12 cplusg class + 𝑔
13 8 12 cfv class + ndx
14 clsm class LSSum
15 4 14 cfv class LSSum r
16 13 15 cop class + ndx LSSum r
17 cmulr class 𝑟
18 8 17 cfv class ndx
19 vi setvar i
20 vj setvar j
21 crsp class RSpan
22 4 21 cfv class RSpan r
23 19 cv setvar i
24 cmgp class mulGrp
25 4 24 cfv class mulGrp r
26 25 14 cfv class LSSum mulGrp r
27 20 cv setvar j
28 23 27 26 co class i LSSum mulGrp r j
29 28 22 cfv class RSpan r i LSSum mulGrp r j
30 19 20 10 10 29 cmpo class i b , j b RSpan r i LSSum mulGrp r j
31 18 30 cop class ndx i b , j b RSpan r i LSSum mulGrp r j
32 11 16 31 ctp class Base ndx b + ndx LSSum r ndx i b , j b RSpan r i LSSum mulGrp r j
33 cts class TopSet
34 8 33 cfv class TopSet ndx
35 23 27 wss wff i j
36 35 wn wff ¬ i j
37 36 20 10 crab class j b | ¬ i j
38 19 10 37 cmpt class i b j b | ¬ i j
39 38 crn class ran i b j b | ¬ i j
40 34 39 cop class TopSet ndx ran i b j b | ¬ i j
41 cple class le
42 8 41 cfv class ndx
43 23 27 cpr class i j
44 43 10 wss wff i j b
45 44 35 wa wff i j b i j
46 45 19 20 copab class i j | i j b i j
47 42 46 cop class ndx i j | i j b i j
48 40 47 cpr class TopSet ndx ran i b j b | ¬ i j ndx i j | i j b i j
49 32 48 cun class Base ndx b + ndx LSSum r ndx i b , j b RSpan r i LSSum mulGrp r j TopSet ndx ran i b j b | ¬ i j ndx i j | i j b i j
50 6 5 49 csb class LIdeal r / b Base ndx b + ndx LSSum r ndx i b , j b RSpan r i LSSum mulGrp r j TopSet ndx ran i b j b | ¬ i j ndx i j | i j b i j
51 1 2 50 cmpt class r V LIdeal r / b Base ndx b + ndx LSSum r ndx i b , j b RSpan r i LSSum mulGrp r j TopSet ndx ran i b j b | ¬ i j ndx i j | i j b i j
52 0 51 wceq Could not format IDLsrg = ( r e. _V |-> [_ ( LIdeal ` r ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) ) : No typesetting found for wff IDLsrg = ( r e. _V |-> [_ ( LIdeal ` r ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( LSSum ` r ) >. , <. ( .r ` ndx ) , ( i e. b , j e. b |-> ( ( RSpan ` r ) ` ( i ( LSSum ` ( mulGrp ` r ) ) j ) ) ) >. } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> { j e. b | -. i C_ j } ) >. , <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. } ) ) with typecode wff