Metamath Proof Explorer


Definition df-img

Description: Define the image function. See brimg for its value. (Contributed by Scott Fenton, 12-Apr-2014)

Ref Expression
Assertion df-img βŠ’π–¨π—†π—€=𝖨𝗆𝖺𝗀𝖾2nd∘1stβ†Ύ1stβ†ΎVΓ—Vβˆ˜π–’π–Ίπ—‹π—

Detailed syntax breakdown

Step Hyp Ref Expression
0 cimg class𝖨𝗆𝗀
1 c2nd class2nd
2 c1st class1st
3 1 2 ccom class2nd∘1st
4 cvv classV
5 4 4 cxp classVΓ—V
6 2 5 cres class1st↾V×V
7 3 6 cres class2nd∘1stβ†Ύ1stβ†ΎVΓ—V
8 7 cimage class𝖨𝗆𝖺𝗀𝖾2nd∘1stβ†Ύ1stβ†ΎVΓ—V
9 ccart class𝖒𝖺𝗋𝗍
10 8 9 ccom class𝖨𝗆𝖺𝗀𝖾2nd∘1stβ†Ύ1stβ†ΎVΓ—Vβˆ˜π–’π–Ίπ—‹π—
11 0 10 wceq wff𝖨𝗆𝗀=𝖨𝗆𝖺𝗀𝖾2nd∘1stβ†Ύ1stβ†ΎVΓ—Vβˆ˜π–’π–Ίπ—‹π—