Metamath Proof Explorer


Definition df-lcv

Description: Define the covering relation for subspaces of a left vector space. Similar to Definition 3.2.18 of PtakPulmannova p. 68. Ptak/Pulmannova's notation A ( W ) B is read " B covers A " or " A is covered by B " , and it means that B is larger than A and there is nothing in between. See lcvbr for binary relation. ( df-cv analog.) (Contributed by NM, 7-Jan-2015)

Ref Expression
Assertion df-lcv L=wVtu|tLSubSpwuLSubSpwtu¬sLSubSpwtssu

Detailed syntax breakdown

Step Hyp Ref Expression
0 clcv classL
1 vw setvarw
2 cvv classV
3 vt setvart
4 vu setvaru
5 3 cv setvart
6 clss classLSubSp
7 1 cv setvarw
8 7 6 cfv classLSubSpw
9 5 8 wcel wfftLSubSpw
10 4 cv setvaru
11 10 8 wcel wffuLSubSpw
12 9 11 wa wfftLSubSpwuLSubSpw
13 5 10 wpss wfftu
14 vs setvars
15 14 cv setvars
16 5 15 wpss wffts
17 15 10 wpss wffsu
18 16 17 wa wfftssu
19 18 14 8 wrex wffsLSubSpwtssu
20 19 wn wff¬sLSubSpwtssu
21 13 20 wa wfftu¬sLSubSpwtssu
22 12 21 wa wfftLSubSpwuLSubSpwtu¬sLSubSpwtssu
23 22 3 4 copab classtu|tLSubSpwuLSubSpwtu¬sLSubSpwtssu
24 1 2 23 cmpt classwVtu|tLSubSpwuLSubSpwtu¬sLSubSpwtssu
25 0 24 wceq wffL=wVtu|tLSubSpwuLSubSpwtu¬sLSubSpwtssu