Metamath Proof Explorer


Definition df-lininds

Description: Define the relation between a module and its linearly independent subsets. (Contributed by AV, 12-Apr-2019) (Revised by AV, 24-Apr-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Assertion df-lininds linIndS = s m | s 𝒫 Base m f Base Scalar m s finSupp 0 Scalar m f f linC m s = 0 m x s f x = 0 Scalar m

Detailed syntax breakdown

Step Hyp Ref Expression
0 clininds class linIndS
1 vs setvar s
2 vm setvar m
3 1 cv setvar s
4 cbs class Base
5 2 cv setvar m
6 5 4 cfv class Base m
7 6 cpw class 𝒫 Base m
8 3 7 wcel wff s 𝒫 Base m
9 vf setvar f
10 csca class Scalar
11 5 10 cfv class Scalar m
12 11 4 cfv class Base Scalar m
13 cmap class 𝑚
14 12 3 13 co class Base Scalar m s
15 9 cv setvar f
16 cfsupp class finSupp
17 c0g class 0 𝑔
18 11 17 cfv class 0 Scalar m
19 15 18 16 wbr wff finSupp 0 Scalar m f
20 clinc class linC
21 5 20 cfv class linC m
22 15 3 21 co class f linC m s
23 5 17 cfv class 0 m
24 22 23 wceq wff f linC m s = 0 m
25 19 24 wa wff finSupp 0 Scalar m f f linC m s = 0 m
26 vx setvar x
27 26 cv setvar x
28 27 15 cfv class f x
29 28 18 wceq wff f x = 0 Scalar m
30 29 26 3 wral wff x s f x = 0 Scalar m
31 25 30 wi wff finSupp 0 Scalar m f f linC m s = 0 m x s f x = 0 Scalar m
32 31 9 14 wral wff f Base Scalar m s finSupp 0 Scalar m f f linC m s = 0 m x s f x = 0 Scalar m
33 8 32 wa wff s 𝒫 Base m f Base Scalar m s finSupp 0 Scalar m f f linC m s = 0 m x s f x = 0 Scalar m
34 33 1 2 copab class s m | s 𝒫 Base m f Base Scalar m s finSupp 0 Scalar m f f linC m s = 0 m x s f x = 0 Scalar m
35 0 34 wceq wff linIndS = s m | s 𝒫 Base m f Base Scalar m s finSupp 0 Scalar m f f linC m s = 0 m x s f x = 0 Scalar m