| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clininds |
⊢ linIndS |
| 1 |
|
vs |
⊢ 𝑠 |
| 2 |
|
vm |
⊢ 𝑚 |
| 3 |
1
|
cv |
⊢ 𝑠 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
2
|
cv |
⊢ 𝑚 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑚 ) |
| 7 |
6
|
cpw |
⊢ 𝒫 ( Base ‘ 𝑚 ) |
| 8 |
3 7
|
wcel |
⊢ 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) |
| 9 |
|
vf |
⊢ 𝑓 |
| 10 |
|
csca |
⊢ Scalar |
| 11 |
5 10
|
cfv |
⊢ ( Scalar ‘ 𝑚 ) |
| 12 |
11 4
|
cfv |
⊢ ( Base ‘ ( Scalar ‘ 𝑚 ) ) |
| 13 |
|
cmap |
⊢ ↑m |
| 14 |
12 3 13
|
co |
⊢ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑠 ) |
| 15 |
9
|
cv |
⊢ 𝑓 |
| 16 |
|
cfsupp |
⊢ finSupp |
| 17 |
|
c0g |
⊢ 0g |
| 18 |
11 17
|
cfv |
⊢ ( 0g ‘ ( Scalar ‘ 𝑚 ) ) |
| 19 |
15 18 16
|
wbr |
⊢ 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) |
| 20 |
|
clinc |
⊢ linC |
| 21 |
5 20
|
cfv |
⊢ ( linC ‘ 𝑚 ) |
| 22 |
15 3 21
|
co |
⊢ ( 𝑓 ( linC ‘ 𝑚 ) 𝑠 ) |
| 23 |
5 17
|
cfv |
⊢ ( 0g ‘ 𝑚 ) |
| 24 |
22 23
|
wceq |
⊢ ( 𝑓 ( linC ‘ 𝑚 ) 𝑠 ) = ( 0g ‘ 𝑚 ) |
| 25 |
19 24
|
wa |
⊢ ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ ( 𝑓 ( linC ‘ 𝑚 ) 𝑠 ) = ( 0g ‘ 𝑚 ) ) |
| 26 |
|
vx |
⊢ 𝑥 |
| 27 |
26
|
cv |
⊢ 𝑥 |
| 28 |
27 15
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
| 29 |
28 18
|
wceq |
⊢ ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑚 ) ) |
| 30 |
29 26 3
|
wral |
⊢ ∀ 𝑥 ∈ 𝑠 ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑚 ) ) |
| 31 |
25 30
|
wi |
⊢ ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ ( 𝑓 ( linC ‘ 𝑚 ) 𝑠 ) = ( 0g ‘ 𝑚 ) ) → ∀ 𝑥 ∈ 𝑠 ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ) |
| 32 |
31 9 14
|
wral |
⊢ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑠 ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ ( 𝑓 ( linC ‘ 𝑚 ) 𝑠 ) = ( 0g ‘ 𝑚 ) ) → ∀ 𝑥 ∈ 𝑠 ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ) |
| 33 |
8 32
|
wa |
⊢ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑠 ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ ( 𝑓 ( linC ‘ 𝑚 ) 𝑠 ) = ( 0g ‘ 𝑚 ) ) → ∀ 𝑥 ∈ 𝑠 ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ) ) |
| 34 |
33 1 2
|
copab |
⊢ { 〈 𝑠 , 𝑚 〉 ∣ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑠 ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ ( 𝑓 ( linC ‘ 𝑚 ) 𝑠 ) = ( 0g ‘ 𝑚 ) ) → ∀ 𝑥 ∈ 𝑠 ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ) ) } |
| 35 |
0 34
|
wceq |
⊢ linIndS = { 〈 𝑠 , 𝑚 〉 ∣ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑠 ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ ( 𝑓 ( linC ‘ 𝑚 ) 𝑠 ) = ( 0g ‘ 𝑚 ) ) → ∀ 𝑥 ∈ 𝑠 ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ) ) } |