Description: The class defining the relation between a module and its linearly independent subsets is a relation. (Contributed by AV, 13-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | rellininds | ⊢ Rel linIndS |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lininds | ⊢ linIndS = { 〈 𝑠 , 𝑚 〉 ∣ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑠 ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ ( 𝑓 ( linC ‘ 𝑚 ) 𝑠 ) = ( 0g ‘ 𝑚 ) ) → ∀ 𝑥 ∈ 𝑠 ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ) ) } | |
2 | 1 | relopabiv | ⊢ Rel linIndS |