Description: The class defining the relation between a module and its linearly independent subsets is a relation. (Contributed by AV, 13-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rellininds | |- Rel linIndS |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lininds | |- linIndS = { <. s , m >. | ( s e. ~P ( Base ` m ) /\ A. f e. ( ( Base ` ( Scalar ` m ) ) ^m s ) ( ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) -> A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) ) ) } |
|
| 2 | 1 | relopabiv | |- Rel linIndS |