Metamath Proof Explorer


Theorem rellininds

Description: The class defining the relation between a module and its linearly independent subsets is a relation. (Contributed by AV, 13-Apr-2019)

Ref Expression
Assertion rellininds
|- Rel linIndS

Proof

Step Hyp Ref Expression
1 df-lininds
 |-  linIndS = { <. s , m >. | ( s e. ~P ( Base ` m ) /\ A. f e. ( ( Base ` ( Scalar ` m ) ) ^m s ) ( ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) -> A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) ) ) }
2 1 relopabiv
 |-  Rel linIndS