| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clininds |
|- linIndS |
| 1 |
|
vs |
|- s |
| 2 |
|
vm |
|- m |
| 3 |
1
|
cv |
|- s |
| 4 |
|
cbs |
|- Base |
| 5 |
2
|
cv |
|- m |
| 6 |
5 4
|
cfv |
|- ( Base ` m ) |
| 7 |
6
|
cpw |
|- ~P ( Base ` m ) |
| 8 |
3 7
|
wcel |
|- s e. ~P ( Base ` m ) |
| 9 |
|
vf |
|- f |
| 10 |
|
csca |
|- Scalar |
| 11 |
5 10
|
cfv |
|- ( Scalar ` m ) |
| 12 |
11 4
|
cfv |
|- ( Base ` ( Scalar ` m ) ) |
| 13 |
|
cmap |
|- ^m |
| 14 |
12 3 13
|
co |
|- ( ( Base ` ( Scalar ` m ) ) ^m s ) |
| 15 |
9
|
cv |
|- f |
| 16 |
|
cfsupp |
|- finSupp |
| 17 |
|
c0g |
|- 0g |
| 18 |
11 17
|
cfv |
|- ( 0g ` ( Scalar ` m ) ) |
| 19 |
15 18 16
|
wbr |
|- f finSupp ( 0g ` ( Scalar ` m ) ) |
| 20 |
|
clinc |
|- linC |
| 21 |
5 20
|
cfv |
|- ( linC ` m ) |
| 22 |
15 3 21
|
co |
|- ( f ( linC ` m ) s ) |
| 23 |
5 17
|
cfv |
|- ( 0g ` m ) |
| 24 |
22 23
|
wceq |
|- ( f ( linC ` m ) s ) = ( 0g ` m ) |
| 25 |
19 24
|
wa |
|- ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) |
| 26 |
|
vx |
|- x |
| 27 |
26
|
cv |
|- x |
| 28 |
27 15
|
cfv |
|- ( f ` x ) |
| 29 |
28 18
|
wceq |
|- ( f ` x ) = ( 0g ` ( Scalar ` m ) ) |
| 30 |
29 26 3
|
wral |
|- A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) |
| 31 |
25 30
|
wi |
|- ( ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) -> A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) ) |
| 32 |
31 9 14
|
wral |
|- A. f e. ( ( Base ` ( Scalar ` m ) ) ^m s ) ( ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) -> A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) ) |
| 33 |
8 32
|
wa |
|- ( s e. ~P ( Base ` m ) /\ A. f e. ( ( Base ` ( Scalar ` m ) ) ^m s ) ( ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) -> A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) ) ) |
| 34 |
33 1 2
|
copab |
|- { <. s , m >. | ( s e. ~P ( Base ` m ) /\ A. f e. ( ( Base ` ( Scalar ` m ) ) ^m s ) ( ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) -> A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) ) ) } |
| 35 |
0 34
|
wceq |
|- linIndS = { <. s , m >. | ( s e. ~P ( Base ` m ) /\ A. f e. ( ( Base ` ( Scalar ` m ) ) ^m s ) ( ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) -> A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) ) ) } |