Step |
Hyp |
Ref |
Expression |
0 |
|
clininds |
|- linIndS |
1 |
|
vs |
|- s |
2 |
|
vm |
|- m |
3 |
1
|
cv |
|- s |
4 |
|
cbs |
|- Base |
5 |
2
|
cv |
|- m |
6 |
5 4
|
cfv |
|- ( Base ` m ) |
7 |
6
|
cpw |
|- ~P ( Base ` m ) |
8 |
3 7
|
wcel |
|- s e. ~P ( Base ` m ) |
9 |
|
vf |
|- f |
10 |
|
csca |
|- Scalar |
11 |
5 10
|
cfv |
|- ( Scalar ` m ) |
12 |
11 4
|
cfv |
|- ( Base ` ( Scalar ` m ) ) |
13 |
|
cmap |
|- ^m |
14 |
12 3 13
|
co |
|- ( ( Base ` ( Scalar ` m ) ) ^m s ) |
15 |
9
|
cv |
|- f |
16 |
|
cfsupp |
|- finSupp |
17 |
|
c0g |
|- 0g |
18 |
11 17
|
cfv |
|- ( 0g ` ( Scalar ` m ) ) |
19 |
15 18 16
|
wbr |
|- f finSupp ( 0g ` ( Scalar ` m ) ) |
20 |
|
clinc |
|- linC |
21 |
5 20
|
cfv |
|- ( linC ` m ) |
22 |
15 3 21
|
co |
|- ( f ( linC ` m ) s ) |
23 |
5 17
|
cfv |
|- ( 0g ` m ) |
24 |
22 23
|
wceq |
|- ( f ( linC ` m ) s ) = ( 0g ` m ) |
25 |
19 24
|
wa |
|- ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) |
26 |
|
vx |
|- x |
27 |
26
|
cv |
|- x |
28 |
27 15
|
cfv |
|- ( f ` x ) |
29 |
28 18
|
wceq |
|- ( f ` x ) = ( 0g ` ( Scalar ` m ) ) |
30 |
29 26 3
|
wral |
|- A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) |
31 |
25 30
|
wi |
|- ( ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) -> A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) ) |
32 |
31 9 14
|
wral |
|- A. f e. ( ( Base ` ( Scalar ` m ) ) ^m s ) ( ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) -> A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) ) |
33 |
8 32
|
wa |
|- ( s e. ~P ( Base ` m ) /\ A. f e. ( ( Base ` ( Scalar ` m ) ) ^m s ) ( ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) -> A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) ) ) |
34 |
33 1 2
|
copab |
|- { <. s , m >. | ( s e. ~P ( Base ` m ) /\ A. f e. ( ( Base ` ( Scalar ` m ) ) ^m s ) ( ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) -> A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) ) ) } |
35 |
0 34
|
wceq |
|- linIndS = { <. s , m >. | ( s e. ~P ( Base ` m ) /\ A. f e. ( ( Base ` ( Scalar ` m ) ) ^m s ) ( ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) -> A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) ) ) } |