Metamath Proof Explorer


Definition df-mesyn

Description: Define the syntax typecode function for expressions. (Contributed by Mario Carneiro, 12-Jun-2023)

Ref Expression
Assertion df-mesyn mESyn=tVcmTCt,emRExtmSyntcm0Ste

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmesy classmESyn
1 vt setvart
2 cvv classV
3 vc setvarc
4 cmtc classmTC
5 1 cv setvart
6 5 4 cfv classmTCt
7 ve setvare
8 cmrex classmREx
9 5 8 cfv classmRExt
10 cmsy classmSyn
11 5 10 cfv classmSynt
12 3 cv setvarc
13 12 11 cfv classmSyntc
14 cm0s classm0St
15 7 cv setvare
16 13 15 14 co classmSyntcm0Ste
17 3 7 6 9 16 cmpo classcmTCt,emRExtmSyntcm0Ste
18 1 2 17 cmpt classtVcmTCt,emRExtmSyntcm0Ste
19 0 18 wceq wffmESyn=tVcmTCt,emRExtmSyntcm0Ste