Metamath Proof Explorer


Definition df-msax

Description: Define the indexing set for a syntax axiom's representation in a tree. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-msax mSAX=tVpmSAtmVHtmVarstp

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmsax classmSAX
1 vt setvart
2 cvv classV
3 vp setvarp
4 cmsa classmSA
5 1 cv setvart
6 5 4 cfv classmSAt
7 cmvh classmVH
8 5 7 cfv classmVHt
9 cmvrs classmVars
10 5 9 cfv classmVarst
11 3 cv setvarp
12 11 10 cfv classmVarstp
13 8 12 cima classmVHtmVarstp
14 3 6 13 cmpt classpmSAtmVHtmVarstp
15 1 2 14 cmpt classtVpmSAtmVHtmVarstp
16 0 15 wceq wffmSAX=tVpmSAtmVHtmVarstp