Metamath Proof Explorer


Definition df-musyn

Description: Define the syntax typecode function for the model universe. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-musyn mUSyn=tVvmUVtmSynt1stv2ndv

Detailed syntax breakdown

Step Hyp Ref Expression
0 cusyn classmUSyn
1 vt setvart
2 cvv classV
3 vv setvarv
4 cmuv classmUV
5 1 cv setvart
6 5 4 cfv classmUVt
7 cmsy classmSyn
8 5 7 cfv classmSynt
9 c1st class1st
10 3 cv setvarv
11 10 9 cfv class1stv
12 11 8 cfv classmSynt1stv
13 c2nd class2nd
14 10 13 cfv class2ndv
15 12 14 cop classmSynt1stv2ndv
16 3 6 15 cmpt classvmUVtmSynt1stv2ndv
17 1 2 16 cmpt classtVvmUVtmSynt1stv2ndv
18 0 17 wceq wffmUSyn=tVvmUVtmSynt1stv2ndv