Metamath Proof Explorer


Definition df-musyn

Description: Define the syntax typecode function for the model universe. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-musyn mUSyn = t V v mUV t mSyn t 1 st v 2 nd v

Detailed syntax breakdown

Step Hyp Ref Expression
0 cusyn class mUSyn
1 vt setvar t
2 cvv class V
3 vv setvar v
4 cmuv class mUV
5 1 cv setvar t
6 5 4 cfv class mUV t
7 cmsy class mSyn
8 5 7 cfv class mSyn t
9 c1st class 1 st
10 3 cv setvar v
11 10 9 cfv class 1 st v
12 11 8 cfv class mSyn t 1 st v
13 c2nd class 2 nd
14 10 13 cfv class 2 nd v
15 12 14 cop class mSyn t 1 st v 2 nd v
16 3 6 15 cmpt class v mUV t mSyn t 1 st v 2 nd v
17 1 2 16 cmpt class t V v mUV t mSyn t 1 st v 2 nd v
18 0 17 wceq wff mUSyn = t V v mUV t mSyn t 1 st v 2 nd v