| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cusyn |
|- mUSyn |
| 1 |
|
vt |
|- t |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vv |
|- v |
| 4 |
|
cmuv |
|- mUV |
| 5 |
1
|
cv |
|- t |
| 6 |
5 4
|
cfv |
|- ( mUV ` t ) |
| 7 |
|
cmsy |
|- mSyn |
| 8 |
5 7
|
cfv |
|- ( mSyn ` t ) |
| 9 |
|
c1st |
|- 1st |
| 10 |
3
|
cv |
|- v |
| 11 |
10 9
|
cfv |
|- ( 1st ` v ) |
| 12 |
11 8
|
cfv |
|- ( ( mSyn ` t ) ` ( 1st ` v ) ) |
| 13 |
|
c2nd |
|- 2nd |
| 14 |
10 13
|
cfv |
|- ( 2nd ` v ) |
| 15 |
12 14
|
cop |
|- <. ( ( mSyn ` t ) ` ( 1st ` v ) ) , ( 2nd ` v ) >. |
| 16 |
3 6 15
|
cmpt |
|- ( v e. ( mUV ` t ) |-> <. ( ( mSyn ` t ) ` ( 1st ` v ) ) , ( 2nd ` v ) >. ) |
| 17 |
1 2 16
|
cmpt |
|- ( t e. _V |-> ( v e. ( mUV ` t ) |-> <. ( ( mSyn ` t ) ` ( 1st ` v ) ) , ( 2nd ` v ) >. ) ) |
| 18 |
0 17
|
wceq |
|- mUSyn = ( t e. _V |-> ( v e. ( mUV ` t ) |-> <. ( ( mSyn ` t ) ` ( 1st ` v ) ) , ( 2nd ` v ) >. ) ) |