Step |
Hyp |
Ref |
Expression |
0 |
|
cusyn |
|- mUSyn |
1 |
|
vt |
|- t |
2 |
|
cvv |
|- _V |
3 |
|
vv |
|- v |
4 |
|
cmuv |
|- mUV |
5 |
1
|
cv |
|- t |
6 |
5 4
|
cfv |
|- ( mUV ` t ) |
7 |
|
cmsy |
|- mSyn |
8 |
5 7
|
cfv |
|- ( mSyn ` t ) |
9 |
|
c1st |
|- 1st |
10 |
3
|
cv |
|- v |
11 |
10 9
|
cfv |
|- ( 1st ` v ) |
12 |
11 8
|
cfv |
|- ( ( mSyn ` t ) ` ( 1st ` v ) ) |
13 |
|
c2nd |
|- 2nd |
14 |
10 13
|
cfv |
|- ( 2nd ` v ) |
15 |
12 14
|
cop |
|- <. ( ( mSyn ` t ) ` ( 1st ` v ) ) , ( 2nd ` v ) >. |
16 |
3 6 15
|
cmpt |
|- ( v e. ( mUV ` t ) |-> <. ( ( mSyn ` t ) ` ( 1st ` v ) ) , ( 2nd ` v ) >. ) |
17 |
1 2 16
|
cmpt |
|- ( t e. _V |-> ( v e. ( mUV ` t ) |-> <. ( ( mSyn ` t ) ` ( 1st ` v ) ) , ( 2nd ` v ) >. ) ) |
18 |
0 17
|
wceq |
|- mUSyn = ( t e. _V |-> ( v e. ( mUV ` t ) |-> <. ( ( mSyn ` t ) ` ( 1st ` v ) ) , ( 2nd ` v ) >. ) ) |