Metamath Proof Explorer


Definition df-gmdl

Description: Define the set of models of a grammatical formal system. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-gmdl
|- mGMdl = { t e. ( mGFS i^i mMdl ) | ( A. c e. ( mTC ` t ) ( ( mUV ` t ) " { c } ) C_ ( ( mUV ` t ) " { ( ( mSyn ` t ) ` c ) } ) /\ A. v e. ( mUV ` c ) A. w e. ( mUV ` c ) ( v ( mFresh ` t ) w <-> v ( mFresh ` t ) ( ( mUSyn ` t ) ` w ) ) /\ A. m e. ( mVL ` t ) A. e e. ( mEx ` t ) ( ( mEval ` t ) " { <. m , e >. } ) = ( ( ( mEval ` t ) " { <. m , ( ( mESyn ` t ) ` e ) >. } ) i^i ( ( mUV ` t ) " { ( 1st ` e ) } ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgmdl
 |-  mGMdl
1 vt
 |-  t
2 cmgfs
 |-  mGFS
3 cmdl
 |-  mMdl
4 2 3 cin
 |-  ( mGFS i^i mMdl )
5 vc
 |-  c
6 cmtc
 |-  mTC
7 1 cv
 |-  t
8 7 6 cfv
 |-  ( mTC ` t )
9 cmuv
 |-  mUV
10 7 9 cfv
 |-  ( mUV ` t )
11 5 cv
 |-  c
12 11 csn
 |-  { c }
13 10 12 cima
 |-  ( ( mUV ` t ) " { c } )
14 cmsy
 |-  mSyn
15 7 14 cfv
 |-  ( mSyn ` t )
16 11 15 cfv
 |-  ( ( mSyn ` t ) ` c )
17 16 csn
 |-  { ( ( mSyn ` t ) ` c ) }
18 10 17 cima
 |-  ( ( mUV ` t ) " { ( ( mSyn ` t ) ` c ) } )
19 13 18 wss
 |-  ( ( mUV ` t ) " { c } ) C_ ( ( mUV ` t ) " { ( ( mSyn ` t ) ` c ) } )
20 19 5 8 wral
 |-  A. c e. ( mTC ` t ) ( ( mUV ` t ) " { c } ) C_ ( ( mUV ` t ) " { ( ( mSyn ` t ) ` c ) } )
21 vv
 |-  v
22 11 9 cfv
 |-  ( mUV ` c )
23 vw
 |-  w
24 21 cv
 |-  v
25 cmfsh
 |-  mFresh
26 7 25 cfv
 |-  ( mFresh ` t )
27 23 cv
 |-  w
28 24 27 26 wbr
 |-  v ( mFresh ` t ) w
29 cusyn
 |-  mUSyn
30 7 29 cfv
 |-  ( mUSyn ` t )
31 27 30 cfv
 |-  ( ( mUSyn ` t ) ` w )
32 24 31 26 wbr
 |-  v ( mFresh ` t ) ( ( mUSyn ` t ) ` w )
33 28 32 wb
 |-  ( v ( mFresh ` t ) w <-> v ( mFresh ` t ) ( ( mUSyn ` t ) ` w ) )
34 33 23 22 wral
 |-  A. w e. ( mUV ` c ) ( v ( mFresh ` t ) w <-> v ( mFresh ` t ) ( ( mUSyn ` t ) ` w ) )
35 34 21 22 wral
 |-  A. v e. ( mUV ` c ) A. w e. ( mUV ` c ) ( v ( mFresh ` t ) w <-> v ( mFresh ` t ) ( ( mUSyn ` t ) ` w ) )
36 vm
 |-  m
37 cmvl
 |-  mVL
38 7 37 cfv
 |-  ( mVL ` t )
39 ve
 |-  e
40 cmex
 |-  mEx
41 7 40 cfv
 |-  ( mEx ` t )
42 cmevl
 |-  mEval
43 7 42 cfv
 |-  ( mEval ` t )
44 36 cv
 |-  m
45 39 cv
 |-  e
46 44 45 cop
 |-  <. m , e >.
47 46 csn
 |-  { <. m , e >. }
48 43 47 cima
 |-  ( ( mEval ` t ) " { <. m , e >. } )
49 cmesy
 |-  mESyn
50 7 49 cfv
 |-  ( mESyn ` t )
51 45 50 cfv
 |-  ( ( mESyn ` t ) ` e )
52 44 51 cop
 |-  <. m , ( ( mESyn ` t ) ` e ) >.
53 52 csn
 |-  { <. m , ( ( mESyn ` t ) ` e ) >. }
54 43 53 cima
 |-  ( ( mEval ` t ) " { <. m , ( ( mESyn ` t ) ` e ) >. } )
55 c1st
 |-  1st
56 45 55 cfv
 |-  ( 1st ` e )
57 56 csn
 |-  { ( 1st ` e ) }
58 10 57 cima
 |-  ( ( mUV ` t ) " { ( 1st ` e ) } )
59 54 58 cin
 |-  ( ( ( mEval ` t ) " { <. m , ( ( mESyn ` t ) ` e ) >. } ) i^i ( ( mUV ` t ) " { ( 1st ` e ) } ) )
60 48 59 wceq
 |-  ( ( mEval ` t ) " { <. m , e >. } ) = ( ( ( mEval ` t ) " { <. m , ( ( mESyn ` t ) ` e ) >. } ) i^i ( ( mUV ` t ) " { ( 1st ` e ) } ) )
61 60 39 41 wral
 |-  A. e e. ( mEx ` t ) ( ( mEval ` t ) " { <. m , e >. } ) = ( ( ( mEval ` t ) " { <. m , ( ( mESyn ` t ) ` e ) >. } ) i^i ( ( mUV ` t ) " { ( 1st ` e ) } ) )
62 61 36 38 wral
 |-  A. m e. ( mVL ` t ) A. e e. ( mEx ` t ) ( ( mEval ` t ) " { <. m , e >. } ) = ( ( ( mEval ` t ) " { <. m , ( ( mESyn ` t ) ` e ) >. } ) i^i ( ( mUV ` t ) " { ( 1st ` e ) } ) )
63 20 35 62 w3a
 |-  ( A. c e. ( mTC ` t ) ( ( mUV ` t ) " { c } ) C_ ( ( mUV ` t ) " { ( ( mSyn ` t ) ` c ) } ) /\ A. v e. ( mUV ` c ) A. w e. ( mUV ` c ) ( v ( mFresh ` t ) w <-> v ( mFresh ` t ) ( ( mUSyn ` t ) ` w ) ) /\ A. m e. ( mVL ` t ) A. e e. ( mEx ` t ) ( ( mEval ` t ) " { <. m , e >. } ) = ( ( ( mEval ` t ) " { <. m , ( ( mESyn ` t ) ` e ) >. } ) i^i ( ( mUV ` t ) " { ( 1st ` e ) } ) ) )
64 63 1 4 crab
 |-  { t e. ( mGFS i^i mMdl ) | ( A. c e. ( mTC ` t ) ( ( mUV ` t ) " { c } ) C_ ( ( mUV ` t ) " { ( ( mSyn ` t ) ` c ) } ) /\ A. v e. ( mUV ` c ) A. w e. ( mUV ` c ) ( v ( mFresh ` t ) w <-> v ( mFresh ` t ) ( ( mUSyn ` t ) ` w ) ) /\ A. m e. ( mVL ` t ) A. e e. ( mEx ` t ) ( ( mEval ` t ) " { <. m , e >. } ) = ( ( ( mEval ` t ) " { <. m , ( ( mESyn ` t ) ` e ) >. } ) i^i ( ( mUV ` t ) " { ( 1st ` e ) } ) ) ) }
65 0 64 wceq
 |-  mGMdl = { t e. ( mGFS i^i mMdl ) | ( A. c e. ( mTC ` t ) ( ( mUV ` t ) " { c } ) C_ ( ( mUV ` t ) " { ( ( mSyn ` t ) ` c ) } ) /\ A. v e. ( mUV ` c ) A. w e. ( mUV ` c ) ( v ( mFresh ` t ) w <-> v ( mFresh ` t ) ( ( mUSyn ` t ) ` w ) ) /\ A. m e. ( mVL ` t ) A. e e. ( mEx ` t ) ( ( mEval ` t ) " { <. m , e >. } ) = ( ( ( mEval ` t ) " { <. m , ( ( mESyn ` t ) ` e ) >. } ) i^i ( ( mUV ` t ) " { ( 1st ` e ) } ) ) ) }