Step |
Hyp |
Ref |
Expression |
0 |
|
cmitp |
|- mItp |
1 |
|
vt |
|- t |
2 |
|
cvv |
|- _V |
3 |
|
va |
|- a |
4 |
|
cmsa |
|- mSA |
5 |
1
|
cv |
|- t |
6 |
5 4
|
cfv |
|- ( mSA ` t ) |
7 |
|
vg |
|- g |
8 |
|
vi |
|- i |
9 |
|
cmvrs |
|- mVars |
10 |
5 9
|
cfv |
|- ( mVars ` t ) |
11 |
3
|
cv |
|- a |
12 |
11 10
|
cfv |
|- ( ( mVars ` t ) ` a ) |
13 |
|
cmuv |
|- mUV |
14 |
5 13
|
cfv |
|- ( mUV ` t ) |
15 |
|
cmty |
|- mType |
16 |
5 15
|
cfv |
|- ( mType ` t ) |
17 |
8
|
cv |
|- i |
18 |
17 16
|
cfv |
|- ( ( mType ` t ) ` i ) |
19 |
18
|
csn |
|- { ( ( mType ` t ) ` i ) } |
20 |
14 19
|
cima |
|- ( ( mUV ` t ) " { ( ( mType ` t ) ` i ) } ) |
21 |
8 12 20
|
cixp |
|- X_ i e. ( ( mVars ` t ) ` a ) ( ( mUV ` t ) " { ( ( mType ` t ) ` i ) } ) |
22 |
|
vx |
|- x |
23 |
|
vm |
|- m |
24 |
|
cmvl |
|- mVL |
25 |
5 24
|
cfv |
|- ( mVL ` t ) |
26 |
7
|
cv |
|- g |
27 |
23
|
cv |
|- m |
28 |
27 12
|
cres |
|- ( m |` ( ( mVars ` t ) ` a ) ) |
29 |
26 28
|
wceq |
|- g = ( m |` ( ( mVars ` t ) ` a ) ) |
30 |
22
|
cv |
|- x |
31 |
|
cmevl |
|- mEval |
32 |
5 31
|
cfv |
|- ( mEval ` t ) |
33 |
27 11 32
|
co |
|- ( m ( mEval ` t ) a ) |
34 |
30 33
|
wceq |
|- x = ( m ( mEval ` t ) a ) |
35 |
29 34
|
wa |
|- ( g = ( m |` ( ( mVars ` t ) ` a ) ) /\ x = ( m ( mEval ` t ) a ) ) |
36 |
35 23 25
|
wrex |
|- E. m e. ( mVL ` t ) ( g = ( m |` ( ( mVars ` t ) ` a ) ) /\ x = ( m ( mEval ` t ) a ) ) |
37 |
36 22
|
cio |
|- ( iota x E. m e. ( mVL ` t ) ( g = ( m |` ( ( mVars ` t ) ` a ) ) /\ x = ( m ( mEval ` t ) a ) ) ) |
38 |
7 21 37
|
cmpt |
|- ( g e. X_ i e. ( ( mVars ` t ) ` a ) ( ( mUV ` t ) " { ( ( mType ` t ) ` i ) } ) |-> ( iota x E. m e. ( mVL ` t ) ( g = ( m |` ( ( mVars ` t ) ` a ) ) /\ x = ( m ( mEval ` t ) a ) ) ) ) |
39 |
3 6 38
|
cmpt |
|- ( a e. ( mSA ` t ) |-> ( g e. X_ i e. ( ( mVars ` t ) ` a ) ( ( mUV ` t ) " { ( ( mType ` t ) ` i ) } ) |-> ( iota x E. m e. ( mVL ` t ) ( g = ( m |` ( ( mVars ` t ) ` a ) ) /\ x = ( m ( mEval ` t ) a ) ) ) ) ) |
40 |
1 2 39
|
cmpt |
|- ( t e. _V |-> ( a e. ( mSA ` t ) |-> ( g e. X_ i e. ( ( mVars ` t ) ` a ) ( ( mUV ` t ) " { ( ( mType ` t ) ` i ) } ) |-> ( iota x E. m e. ( mVL ` t ) ( g = ( m |` ( ( mVars ` t ) ` a ) ) /\ x = ( m ( mEval ` t ) a ) ) ) ) ) ) |
41 |
0 40
|
wceq |
|- mItp = ( t e. _V |-> ( a e. ( mSA ` t ) |-> ( g e. X_ i e. ( ( mVars ` t ) ` a ) ( ( mUV ` t ) " { ( ( mType ` t ) ` i ) } ) |-> ( iota x E. m e. ( mVL ` t ) ( g = ( m |` ( ( mVars ` t ) ` a ) ) /\ x = ( m ( mEval ` t ) a ) ) ) ) ) ) |