Metamath Proof Explorer


Definition df-mitp

Description: Define the interpretation function for a model. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mitp mItp = t V a mSA t g i mVars t a mUV t mType t i ι x | m mVL t g = m mVars t a x = m mEval t a

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmitp class mItp
1 vt setvar t
2 cvv class V
3 va setvar a
4 cmsa class mSA
5 1 cv setvar t
6 5 4 cfv class mSA t
7 vg setvar g
8 vi setvar i
9 cmvrs class mVars
10 5 9 cfv class mVars t
11 3 cv setvar a
12 11 10 cfv class mVars t a
13 cmuv class mUV
14 5 13 cfv class mUV t
15 cmty class mType
16 5 15 cfv class mType t
17 8 cv setvar i
18 17 16 cfv class mType t i
19 18 csn class mType t i
20 14 19 cima class mUV t mType t i
21 8 12 20 cixp class i mVars t a mUV t mType t i
22 vx setvar x
23 vm setvar m
24 cmvl class mVL
25 5 24 cfv class mVL t
26 7 cv setvar g
27 23 cv setvar m
28 27 12 cres class m mVars t a
29 26 28 wceq wff g = m mVars t a
30 22 cv setvar x
31 cmevl class mEval
32 5 31 cfv class mEval t
33 27 11 32 co class m mEval t a
34 30 33 wceq wff x = m mEval t a
35 29 34 wa wff g = m mVars t a x = m mEval t a
36 35 23 25 wrex wff m mVL t g = m mVars t a x = m mEval t a
37 36 22 cio class ι x | m mVL t g = m mVars t a x = m mEval t a
38 7 21 37 cmpt class g i mVars t a mUV t mType t i ι x | m mVL t g = m mVars t a x = m mEval t a
39 3 6 38 cmpt class a mSA t g i mVars t a mUV t mType t i ι x | m mVL t g = m mVars t a x = m mEval t a
40 1 2 39 cmpt class t V a mSA t g i mVars t a mUV t mType t i ι x | m mVL t g = m mVars t a x = m mEval t a
41 0 40 wceq wff mItp = t V a mSA t g i mVars t a mUV t mType t i ι x | m mVL t g = m mVars t a x = m mEval t a