Metamath Proof Explorer


Definition df-mfitp

Description: Define a function that produces the evaluation function, given the interpretation function for a model. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mfitp mFromItp = t V f a mSA t mUV t 1 st t a i mVars t a mUV t mType t i ι n mUV t 𝑝𝑚 mVL t × mEx t | m mVL t v mVR t m mVH t v n m v e a g e mST t a g m e n f i mVars t a m n g mVH t i e mEx t n m e = n m mESyn t e mUV t 1 st e

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmfitp class mFromItp
1 vt setvar t
2 cvv class V
3 vf setvar f
4 va setvar a
5 cmsa class mSA
6 1 cv setvar t
7 6 5 cfv class mSA t
8 cmuv class mUV
9 6 8 cfv class mUV t
10 c1st class 1 st
11 6 10 cfv class 1 st t
12 4 cv setvar a
13 12 11 cfv class 1 st t a
14 13 csn class 1 st t a
15 9 14 cima class mUV t 1 st t a
16 cmap class 𝑚
17 vi setvar i
18 cmvrs class mVars
19 6 18 cfv class mVars t
20 12 19 cfv class mVars t a
21 cmty class mType
22 6 21 cfv class mType t
23 17 cv setvar i
24 23 22 cfv class mType t i
25 24 csn class mType t i
26 9 25 cima class mUV t mType t i
27 17 20 26 cixp class i mVars t a mUV t mType t i
28 15 27 16 co class mUV t 1 st t a i mVars t a mUV t mType t i
29 4 7 28 cixp class a mSA t mUV t 1 st t a i mVars t a mUV t mType t i
30 vn setvar n
31 cpm class 𝑝𝑚
32 cmvl class mVL
33 6 32 cfv class mVL t
34 cmex class mEx
35 6 34 cfv class mEx t
36 33 35 cxp class mVL t × mEx t
37 9 36 31 co class mUV t 𝑝𝑚 mVL t × mEx t
38 vm setvar m
39 vv setvar v
40 cmvar class mVR
41 6 40 cfv class mVR t
42 38 cv setvar m
43 cmvh class mVH
44 6 43 cfv class mVH t
45 39 cv setvar v
46 45 44 cfv class mVH t v
47 42 46 cop class m mVH t v
48 30 cv setvar n
49 45 42 cfv class m v
50 47 49 48 wbr wff m mVH t v n m v
51 50 39 41 wral wff v mVR t m mVH t v n m v
52 ve setvar e
53 vg setvar g
54 52 cv setvar e
55 cmst class mST
56 6 55 cfv class mST t
57 53 cv setvar g
58 12 57 cop class a g
59 54 58 56 wbr wff e mST t a g
60 42 54 cop class m e
61 3 cv setvar f
62 23 44 cfv class mVH t i
63 62 57 cfv class g mVH t i
64 42 63 48 co class m n g mVH t i
65 17 20 64 cmpt class i mVars t a m n g mVH t i
66 65 61 cfv class f i mVars t a m n g mVH t i
67 60 66 48 wbr wff m e n f i mVars t a m n g mVH t i
68 59 67 wi wff e mST t a g m e n f i mVars t a m n g mVH t i
69 68 53 wal wff g e mST t a g m e n f i mVars t a m n g mVH t i
70 69 4 wal wff a g e mST t a g m e n f i mVars t a m n g mVH t i
71 70 52 wal wff e a g e mST t a g m e n f i mVars t a m n g mVH t i
72 60 csn class m e
73 48 72 cima class n m e
74 cmesy class mESyn
75 6 74 cfv class mESyn t
76 54 75 cfv class mESyn t e
77 42 76 cop class m mESyn t e
78 77 csn class m mESyn t e
79 48 78 cima class n m mESyn t e
80 54 10 cfv class 1 st e
81 80 csn class 1 st e
82 9 81 cima class mUV t 1 st e
83 79 82 cin class n m mESyn t e mUV t 1 st e
84 73 83 wceq wff n m e = n m mESyn t e mUV t 1 st e
85 84 52 35 wral wff e mEx t n m e = n m mESyn t e mUV t 1 st e
86 51 71 85 w3a wff v mVR t m mVH t v n m v e a g e mST t a g m e n f i mVars t a m n g mVH t i e mEx t n m e = n m mESyn t e mUV t 1 st e
87 86 38 33 wral wff m mVL t v mVR t m mVH t v n m v e a g e mST t a g m e n f i mVars t a m n g mVH t i e mEx t n m e = n m mESyn t e mUV t 1 st e
88 87 30 37 crio class ι n mUV t 𝑝𝑚 mVL t × mEx t | m mVL t v mVR t m mVH t v n m v e a g e mST t a g m e n f i mVars t a m n g mVH t i e mEx t n m e = n m mESyn t e mUV t 1 st e
89 3 29 88 cmpt class f a mSA t mUV t 1 st t a i mVars t a mUV t mType t i ι n mUV t 𝑝𝑚 mVL t × mEx t | m mVL t v mVR t m mVH t v n m v e a g e mST t a g m e n f i mVars t a m n g mVH t i e mEx t n m e = n m mESyn t e mUV t 1 st e
90 1 2 89 cmpt class t V f a mSA t mUV t 1 st t a i mVars t a mUV t mType t i ι n mUV t 𝑝𝑚 mVL t × mEx t | m mVL t v mVR t m mVH t v n m v e a g e mST t a g m e n f i mVars t a m n g mVH t i e mEx t n m e = n m mESyn t e mUV t 1 st e
91 0 90 wceq wff mFromItp = t V f a mSA t mUV t 1 st t a i mVars t a mUV t mType t i ι n mUV t 𝑝𝑚 mVL t × mEx t | m mVL t v mVR t m mVH t v n m v e a g e mST t a g m e n f i mVars t a m n g mVH t i e mEx t n m e = n m mESyn t e mUV t 1 st e