Metamath Proof Explorer


Definition df-mfitp

Description: Define a function that produces the evaluation function, given the interpretation function for a model. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mfitp mFromItp = ( 𝑡 ∈ V ↦ ( 𝑓X 𝑎 ∈ ( mSA ‘ 𝑡 ) ( ( ( mUV ‘ 𝑡 ) “ { ( ( 1st𝑡 ) ‘ 𝑎 ) } ) ↑m X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) ) ↦ ( 𝑛 ∈ ( ( mUV ‘ 𝑡 ) ↑pm ( ( mVL ‘ 𝑡 ) × ( mEx ‘ 𝑡 ) ) ) ∀ 𝑚 ∈ ( mVL ‘ 𝑡 ) ( ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ⟩ 𝑛 ( 𝑚𝑣 ) ∧ ∀ 𝑒𝑎𝑔 ( 𝑒 ( mST ‘ 𝑡 ) ⟨ 𝑎 , 𝑔 ⟩ → ⟨ 𝑚 , 𝑒𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) ) ∧ ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( ( 𝑛 “ { ⟨ 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ⟩ } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st𝑒 ) } ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmfitp mFromItp
1 vt 𝑡
2 cvv V
3 vf 𝑓
4 va 𝑎
5 cmsa mSA
6 1 cv 𝑡
7 6 5 cfv ( mSA ‘ 𝑡 )
8 cmuv mUV
9 6 8 cfv ( mUV ‘ 𝑡 )
10 c1st 1st
11 6 10 cfv ( 1st𝑡 )
12 4 cv 𝑎
13 12 11 cfv ( ( 1st𝑡 ) ‘ 𝑎 )
14 13 csn { ( ( 1st𝑡 ) ‘ 𝑎 ) }
15 9 14 cima ( ( mUV ‘ 𝑡 ) “ { ( ( 1st𝑡 ) ‘ 𝑎 ) } )
16 cmap m
17 vi 𝑖
18 cmvrs mVars
19 6 18 cfv ( mVars ‘ 𝑡 )
20 12 19 cfv ( ( mVars ‘ 𝑡 ) ‘ 𝑎 )
21 cmty mType
22 6 21 cfv ( mType ‘ 𝑡 )
23 17 cv 𝑖
24 23 22 cfv ( ( mType ‘ 𝑡 ) ‘ 𝑖 )
25 24 csn { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) }
26 9 25 cima ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } )
27 17 20 26 cixp X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } )
28 15 27 16 co ( ( ( mUV ‘ 𝑡 ) “ { ( ( 1st𝑡 ) ‘ 𝑎 ) } ) ↑m X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) )
29 4 7 28 cixp X 𝑎 ∈ ( mSA ‘ 𝑡 ) ( ( ( mUV ‘ 𝑡 ) “ { ( ( 1st𝑡 ) ‘ 𝑎 ) } ) ↑m X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) )
30 vn 𝑛
31 cpm pm
32 cmvl mVL
33 6 32 cfv ( mVL ‘ 𝑡 )
34 cmex mEx
35 6 34 cfv ( mEx ‘ 𝑡 )
36 33 35 cxp ( ( mVL ‘ 𝑡 ) × ( mEx ‘ 𝑡 ) )
37 9 36 31 co ( ( mUV ‘ 𝑡 ) ↑pm ( ( mVL ‘ 𝑡 ) × ( mEx ‘ 𝑡 ) ) )
38 vm 𝑚
39 vv 𝑣
40 cmvar mVR
41 6 40 cfv ( mVR ‘ 𝑡 )
42 38 cv 𝑚
43 cmvh mVH
44 6 43 cfv ( mVH ‘ 𝑡 )
45 39 cv 𝑣
46 45 44 cfv ( ( mVH ‘ 𝑡 ) ‘ 𝑣 )
47 42 46 cop 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ⟩
48 30 cv 𝑛
49 45 42 cfv ( 𝑚𝑣 )
50 47 49 48 wbr 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ⟩ 𝑛 ( 𝑚𝑣 )
51 50 39 41 wral 𝑣 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ⟩ 𝑛 ( 𝑚𝑣 )
52 ve 𝑒
53 vg 𝑔
54 52 cv 𝑒
55 cmst mST
56 6 55 cfv ( mST ‘ 𝑡 )
57 53 cv 𝑔
58 12 57 cop 𝑎 , 𝑔
59 54 58 56 wbr 𝑒 ( mST ‘ 𝑡 ) ⟨ 𝑎 , 𝑔
60 42 54 cop 𝑚 , 𝑒
61 3 cv 𝑓
62 23 44 cfv ( ( mVH ‘ 𝑡 ) ‘ 𝑖 )
63 62 57 cfv ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) )
64 42 63 48 co ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) )
65 17 20 64 cmpt ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) )
66 65 61 cfv ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) )
67 60 66 48 wbr 𝑚 , 𝑒𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) )
68 59 67 wi ( 𝑒 ( mST ‘ 𝑡 ) ⟨ 𝑎 , 𝑔 ⟩ → ⟨ 𝑚 , 𝑒𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) )
69 68 53 wal 𝑔 ( 𝑒 ( mST ‘ 𝑡 ) ⟨ 𝑎 , 𝑔 ⟩ → ⟨ 𝑚 , 𝑒𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) )
70 69 4 wal 𝑎𝑔 ( 𝑒 ( mST ‘ 𝑡 ) ⟨ 𝑎 , 𝑔 ⟩ → ⟨ 𝑚 , 𝑒𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) )
71 70 52 wal 𝑒𝑎𝑔 ( 𝑒 ( mST ‘ 𝑡 ) ⟨ 𝑎 , 𝑔 ⟩ → ⟨ 𝑚 , 𝑒𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) )
72 60 csn { ⟨ 𝑚 , 𝑒 ⟩ }
73 48 72 cima ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } )
74 cmesy mESyn
75 6 74 cfv ( mESyn ‘ 𝑡 )
76 54 75 cfv ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 )
77 42 76 cop 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ⟩
78 77 csn { ⟨ 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ⟩ }
79 48 78 cima ( 𝑛 “ { ⟨ 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ⟩ } )
80 54 10 cfv ( 1st𝑒 )
81 80 csn { ( 1st𝑒 ) }
82 9 81 cima ( ( mUV ‘ 𝑡 ) “ { ( 1st𝑒 ) } )
83 79 82 cin ( ( 𝑛 “ { ⟨ 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ⟩ } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st𝑒 ) } ) )
84 73 83 wceq ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( ( 𝑛 “ { ⟨ 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ⟩ } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st𝑒 ) } ) )
85 84 52 35 wral 𝑒 ∈ ( mEx ‘ 𝑡 ) ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( ( 𝑛 “ { ⟨ 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ⟩ } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st𝑒 ) } ) )
86 51 71 85 w3a ( ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ⟩ 𝑛 ( 𝑚𝑣 ) ∧ ∀ 𝑒𝑎𝑔 ( 𝑒 ( mST ‘ 𝑡 ) ⟨ 𝑎 , 𝑔 ⟩ → ⟨ 𝑚 , 𝑒𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) ) ∧ ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( ( 𝑛 “ { ⟨ 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ⟩ } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st𝑒 ) } ) ) )
87 86 38 33 wral 𝑚 ∈ ( mVL ‘ 𝑡 ) ( ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ⟩ 𝑛 ( 𝑚𝑣 ) ∧ ∀ 𝑒𝑎𝑔 ( 𝑒 ( mST ‘ 𝑡 ) ⟨ 𝑎 , 𝑔 ⟩ → ⟨ 𝑚 , 𝑒𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) ) ∧ ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( ( 𝑛 “ { ⟨ 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ⟩ } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st𝑒 ) } ) ) )
88 87 30 37 crio ( 𝑛 ∈ ( ( mUV ‘ 𝑡 ) ↑pm ( ( mVL ‘ 𝑡 ) × ( mEx ‘ 𝑡 ) ) ) ∀ 𝑚 ∈ ( mVL ‘ 𝑡 ) ( ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ⟩ 𝑛 ( 𝑚𝑣 ) ∧ ∀ 𝑒𝑎𝑔 ( 𝑒 ( mST ‘ 𝑡 ) ⟨ 𝑎 , 𝑔 ⟩ → ⟨ 𝑚 , 𝑒𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) ) ∧ ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( ( 𝑛 “ { ⟨ 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ⟩ } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st𝑒 ) } ) ) ) )
89 3 29 88 cmpt ( 𝑓X 𝑎 ∈ ( mSA ‘ 𝑡 ) ( ( ( mUV ‘ 𝑡 ) “ { ( ( 1st𝑡 ) ‘ 𝑎 ) } ) ↑m X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) ) ↦ ( 𝑛 ∈ ( ( mUV ‘ 𝑡 ) ↑pm ( ( mVL ‘ 𝑡 ) × ( mEx ‘ 𝑡 ) ) ) ∀ 𝑚 ∈ ( mVL ‘ 𝑡 ) ( ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ⟩ 𝑛 ( 𝑚𝑣 ) ∧ ∀ 𝑒𝑎𝑔 ( 𝑒 ( mST ‘ 𝑡 ) ⟨ 𝑎 , 𝑔 ⟩ → ⟨ 𝑚 , 𝑒𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) ) ∧ ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( ( 𝑛 “ { ⟨ 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ⟩ } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st𝑒 ) } ) ) ) ) )
90 1 2 89 cmpt ( 𝑡 ∈ V ↦ ( 𝑓X 𝑎 ∈ ( mSA ‘ 𝑡 ) ( ( ( mUV ‘ 𝑡 ) “ { ( ( 1st𝑡 ) ‘ 𝑎 ) } ) ↑m X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) ) ↦ ( 𝑛 ∈ ( ( mUV ‘ 𝑡 ) ↑pm ( ( mVL ‘ 𝑡 ) × ( mEx ‘ 𝑡 ) ) ) ∀ 𝑚 ∈ ( mVL ‘ 𝑡 ) ( ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ⟩ 𝑛 ( 𝑚𝑣 ) ∧ ∀ 𝑒𝑎𝑔 ( 𝑒 ( mST ‘ 𝑡 ) ⟨ 𝑎 , 𝑔 ⟩ → ⟨ 𝑚 , 𝑒𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) ) ∧ ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( ( 𝑛 “ { ⟨ 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ⟩ } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st𝑒 ) } ) ) ) ) ) )
91 0 90 wceq mFromItp = ( 𝑡 ∈ V ↦ ( 𝑓X 𝑎 ∈ ( mSA ‘ 𝑡 ) ( ( ( mUV ‘ 𝑡 ) “ { ( ( 1st𝑡 ) ‘ 𝑎 ) } ) ↑m X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) ) ↦ ( 𝑛 ∈ ( ( mUV ‘ 𝑡 ) ↑pm ( ( mVL ‘ 𝑡 ) × ( mEx ‘ 𝑡 ) ) ) ∀ 𝑚 ∈ ( mVL ‘ 𝑡 ) ( ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ⟩ 𝑛 ( 𝑚𝑣 ) ∧ ∀ 𝑒𝑎𝑔 ( 𝑒 ( mST ‘ 𝑡 ) ⟨ 𝑎 , 𝑔 ⟩ → ⟨ 𝑚 , 𝑒𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) ) ∧ ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( ( 𝑛 “ { ⟨ 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ⟩ } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st𝑒 ) } ) ) ) ) ) )