| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmfitp |
⊢ mFromItp |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vf |
⊢ 𝑓 |
| 4 |
|
va |
⊢ 𝑎 |
| 5 |
|
cmsa |
⊢ mSA |
| 6 |
1
|
cv |
⊢ 𝑡 |
| 7 |
6 5
|
cfv |
⊢ ( mSA ‘ 𝑡 ) |
| 8 |
|
cmuv |
⊢ mUV |
| 9 |
6 8
|
cfv |
⊢ ( mUV ‘ 𝑡 ) |
| 10 |
|
c1st |
⊢ 1st |
| 11 |
6 10
|
cfv |
⊢ ( 1st ‘ 𝑡 ) |
| 12 |
4
|
cv |
⊢ 𝑎 |
| 13 |
12 11
|
cfv |
⊢ ( ( 1st ‘ 𝑡 ) ‘ 𝑎 ) |
| 14 |
13
|
csn |
⊢ { ( ( 1st ‘ 𝑡 ) ‘ 𝑎 ) } |
| 15 |
9 14
|
cima |
⊢ ( ( mUV ‘ 𝑡 ) “ { ( ( 1st ‘ 𝑡 ) ‘ 𝑎 ) } ) |
| 16 |
|
cmap |
⊢ ↑m |
| 17 |
|
vi |
⊢ 𝑖 |
| 18 |
|
cmvrs |
⊢ mVars |
| 19 |
6 18
|
cfv |
⊢ ( mVars ‘ 𝑡 ) |
| 20 |
12 19
|
cfv |
⊢ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) |
| 21 |
|
cmty |
⊢ mType |
| 22 |
6 21
|
cfv |
⊢ ( mType ‘ 𝑡 ) |
| 23 |
17
|
cv |
⊢ 𝑖 |
| 24 |
23 22
|
cfv |
⊢ ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) |
| 25 |
24
|
csn |
⊢ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } |
| 26 |
9 25
|
cima |
⊢ ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) |
| 27 |
17 20 26
|
cixp |
⊢ X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) |
| 28 |
15 27 16
|
co |
⊢ ( ( ( mUV ‘ 𝑡 ) “ { ( ( 1st ‘ 𝑡 ) ‘ 𝑎 ) } ) ↑m X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) ) |
| 29 |
4 7 28
|
cixp |
⊢ X 𝑎 ∈ ( mSA ‘ 𝑡 ) ( ( ( mUV ‘ 𝑡 ) “ { ( ( 1st ‘ 𝑡 ) ‘ 𝑎 ) } ) ↑m X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) ) |
| 30 |
|
vn |
⊢ 𝑛 |
| 31 |
|
cpm |
⊢ ↑pm |
| 32 |
|
cmvl |
⊢ mVL |
| 33 |
6 32
|
cfv |
⊢ ( mVL ‘ 𝑡 ) |
| 34 |
|
cmex |
⊢ mEx |
| 35 |
6 34
|
cfv |
⊢ ( mEx ‘ 𝑡 ) |
| 36 |
33 35
|
cxp |
⊢ ( ( mVL ‘ 𝑡 ) × ( mEx ‘ 𝑡 ) ) |
| 37 |
9 36 31
|
co |
⊢ ( ( mUV ‘ 𝑡 ) ↑pm ( ( mVL ‘ 𝑡 ) × ( mEx ‘ 𝑡 ) ) ) |
| 38 |
|
vm |
⊢ 𝑚 |
| 39 |
|
vv |
⊢ 𝑣 |
| 40 |
|
cmvar |
⊢ mVR |
| 41 |
6 40
|
cfv |
⊢ ( mVR ‘ 𝑡 ) |
| 42 |
38
|
cv |
⊢ 𝑚 |
| 43 |
|
cmvh |
⊢ mVH |
| 44 |
6 43
|
cfv |
⊢ ( mVH ‘ 𝑡 ) |
| 45 |
39
|
cv |
⊢ 𝑣 |
| 46 |
45 44
|
cfv |
⊢ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) |
| 47 |
42 46
|
cop |
⊢ 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) 〉 |
| 48 |
30
|
cv |
⊢ 𝑛 |
| 49 |
45 42
|
cfv |
⊢ ( 𝑚 ‘ 𝑣 ) |
| 50 |
47 49 48
|
wbr |
⊢ 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) 〉 𝑛 ( 𝑚 ‘ 𝑣 ) |
| 51 |
50 39 41
|
wral |
⊢ ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) 〉 𝑛 ( 𝑚 ‘ 𝑣 ) |
| 52 |
|
ve |
⊢ 𝑒 |
| 53 |
|
vg |
⊢ 𝑔 |
| 54 |
52
|
cv |
⊢ 𝑒 |
| 55 |
|
cmst |
⊢ mST |
| 56 |
6 55
|
cfv |
⊢ ( mST ‘ 𝑡 ) |
| 57 |
53
|
cv |
⊢ 𝑔 |
| 58 |
12 57
|
cop |
⊢ 〈 𝑎 , 𝑔 〉 |
| 59 |
54 58 56
|
wbr |
⊢ 𝑒 ( mST ‘ 𝑡 ) 〈 𝑎 , 𝑔 〉 |
| 60 |
42 54
|
cop |
⊢ 〈 𝑚 , 𝑒 〉 |
| 61 |
3
|
cv |
⊢ 𝑓 |
| 62 |
23 44
|
cfv |
⊢ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) |
| 63 |
62 57
|
cfv |
⊢ ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) |
| 64 |
42 63 48
|
co |
⊢ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) |
| 65 |
17 20 64
|
cmpt |
⊢ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) |
| 66 |
65 61
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) |
| 67 |
60 66 48
|
wbr |
⊢ 〈 𝑚 , 𝑒 〉 𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) |
| 68 |
59 67
|
wi |
⊢ ( 𝑒 ( mST ‘ 𝑡 ) 〈 𝑎 , 𝑔 〉 → 〈 𝑚 , 𝑒 〉 𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) ) |
| 69 |
68 53
|
wal |
⊢ ∀ 𝑔 ( 𝑒 ( mST ‘ 𝑡 ) 〈 𝑎 , 𝑔 〉 → 〈 𝑚 , 𝑒 〉 𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) ) |
| 70 |
69 4
|
wal |
⊢ ∀ 𝑎 ∀ 𝑔 ( 𝑒 ( mST ‘ 𝑡 ) 〈 𝑎 , 𝑔 〉 → 〈 𝑚 , 𝑒 〉 𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) ) |
| 71 |
70 52
|
wal |
⊢ ∀ 𝑒 ∀ 𝑎 ∀ 𝑔 ( 𝑒 ( mST ‘ 𝑡 ) 〈 𝑎 , 𝑔 〉 → 〈 𝑚 , 𝑒 〉 𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) ) |
| 72 |
60
|
csn |
⊢ { 〈 𝑚 , 𝑒 〉 } |
| 73 |
48 72
|
cima |
⊢ ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) |
| 74 |
|
cmesy |
⊢ mESyn |
| 75 |
6 74
|
cfv |
⊢ ( mESyn ‘ 𝑡 ) |
| 76 |
54 75
|
cfv |
⊢ ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) |
| 77 |
42 76
|
cop |
⊢ 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 |
| 78 |
77
|
csn |
⊢ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } |
| 79 |
48 78
|
cima |
⊢ ( 𝑛 “ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } ) |
| 80 |
54 10
|
cfv |
⊢ ( 1st ‘ 𝑒 ) |
| 81 |
80
|
csn |
⊢ { ( 1st ‘ 𝑒 ) } |
| 82 |
9 81
|
cima |
⊢ ( ( mUV ‘ 𝑡 ) “ { ( 1st ‘ 𝑒 ) } ) |
| 83 |
79 82
|
cin |
⊢ ( ( 𝑛 “ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st ‘ 𝑒 ) } ) ) |
| 84 |
73 83
|
wceq |
⊢ ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( ( 𝑛 “ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st ‘ 𝑒 ) } ) ) |
| 85 |
84 52 35
|
wral |
⊢ ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( ( 𝑛 “ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st ‘ 𝑒 ) } ) ) |
| 86 |
51 71 85
|
w3a |
⊢ ( ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) 〉 𝑛 ( 𝑚 ‘ 𝑣 ) ∧ ∀ 𝑒 ∀ 𝑎 ∀ 𝑔 ( 𝑒 ( mST ‘ 𝑡 ) 〈 𝑎 , 𝑔 〉 → 〈 𝑚 , 𝑒 〉 𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) ) ∧ ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( ( 𝑛 “ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st ‘ 𝑒 ) } ) ) ) |
| 87 |
86 38 33
|
wral |
⊢ ∀ 𝑚 ∈ ( mVL ‘ 𝑡 ) ( ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) 〉 𝑛 ( 𝑚 ‘ 𝑣 ) ∧ ∀ 𝑒 ∀ 𝑎 ∀ 𝑔 ( 𝑒 ( mST ‘ 𝑡 ) 〈 𝑎 , 𝑔 〉 → 〈 𝑚 , 𝑒 〉 𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) ) ∧ ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( ( 𝑛 “ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st ‘ 𝑒 ) } ) ) ) |
| 88 |
87 30 37
|
crio |
⊢ ( ℩ 𝑛 ∈ ( ( mUV ‘ 𝑡 ) ↑pm ( ( mVL ‘ 𝑡 ) × ( mEx ‘ 𝑡 ) ) ) ∀ 𝑚 ∈ ( mVL ‘ 𝑡 ) ( ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) 〉 𝑛 ( 𝑚 ‘ 𝑣 ) ∧ ∀ 𝑒 ∀ 𝑎 ∀ 𝑔 ( 𝑒 ( mST ‘ 𝑡 ) 〈 𝑎 , 𝑔 〉 → 〈 𝑚 , 𝑒 〉 𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) ) ∧ ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( ( 𝑛 “ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st ‘ 𝑒 ) } ) ) ) ) |
| 89 |
3 29 88
|
cmpt |
⊢ ( 𝑓 ∈ X 𝑎 ∈ ( mSA ‘ 𝑡 ) ( ( ( mUV ‘ 𝑡 ) “ { ( ( 1st ‘ 𝑡 ) ‘ 𝑎 ) } ) ↑m X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) ) ↦ ( ℩ 𝑛 ∈ ( ( mUV ‘ 𝑡 ) ↑pm ( ( mVL ‘ 𝑡 ) × ( mEx ‘ 𝑡 ) ) ) ∀ 𝑚 ∈ ( mVL ‘ 𝑡 ) ( ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) 〉 𝑛 ( 𝑚 ‘ 𝑣 ) ∧ ∀ 𝑒 ∀ 𝑎 ∀ 𝑔 ( 𝑒 ( mST ‘ 𝑡 ) 〈 𝑎 , 𝑔 〉 → 〈 𝑚 , 𝑒 〉 𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) ) ∧ ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( ( 𝑛 “ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st ‘ 𝑒 ) } ) ) ) ) ) |
| 90 |
1 2 89
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ ( 𝑓 ∈ X 𝑎 ∈ ( mSA ‘ 𝑡 ) ( ( ( mUV ‘ 𝑡 ) “ { ( ( 1st ‘ 𝑡 ) ‘ 𝑎 ) } ) ↑m X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) ) ↦ ( ℩ 𝑛 ∈ ( ( mUV ‘ 𝑡 ) ↑pm ( ( mVL ‘ 𝑡 ) × ( mEx ‘ 𝑡 ) ) ) ∀ 𝑚 ∈ ( mVL ‘ 𝑡 ) ( ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) 〉 𝑛 ( 𝑚 ‘ 𝑣 ) ∧ ∀ 𝑒 ∀ 𝑎 ∀ 𝑔 ( 𝑒 ( mST ‘ 𝑡 ) 〈 𝑎 , 𝑔 〉 → 〈 𝑚 , 𝑒 〉 𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) ) ∧ ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( ( 𝑛 “ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st ‘ 𝑒 ) } ) ) ) ) ) ) |
| 91 |
0 90
|
wceq |
⊢ mFromItp = ( 𝑡 ∈ V ↦ ( 𝑓 ∈ X 𝑎 ∈ ( mSA ‘ 𝑡 ) ( ( ( mUV ‘ 𝑡 ) “ { ( ( 1st ‘ 𝑡 ) ‘ 𝑎 ) } ) ↑m X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) ) ↦ ( ℩ 𝑛 ∈ ( ( mUV ‘ 𝑡 ) ↑pm ( ( mVL ‘ 𝑡 ) × ( mEx ‘ 𝑡 ) ) ) ∀ 𝑚 ∈ ( mVL ‘ 𝑡 ) ( ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) 〉 𝑛 ( 𝑚 ‘ 𝑣 ) ∧ ∀ 𝑒 ∀ 𝑎 ∀ 𝑔 ( 𝑒 ( mST ‘ 𝑡 ) 〈 𝑎 , 𝑔 〉 → 〈 𝑚 , 𝑒 〉 𝑛 ( 𝑓 ‘ ( 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ↦ ( 𝑚 𝑛 ( 𝑔 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑖 ) ) ) ) ) ) ∧ ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( ( 𝑛 “ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st ‘ 𝑒 ) } ) ) ) ) ) ) |