Step |
Hyp |
Ref |
Expression |
0 |
|
cmfitp |
|- mFromItp |
1 |
|
vt |
|- t |
2 |
|
cvv |
|- _V |
3 |
|
vf |
|- f |
4 |
|
va |
|- a |
5 |
|
cmsa |
|- mSA |
6 |
1
|
cv |
|- t |
7 |
6 5
|
cfv |
|- ( mSA ` t ) |
8 |
|
cmuv |
|- mUV |
9 |
6 8
|
cfv |
|- ( mUV ` t ) |
10 |
|
c1st |
|- 1st |
11 |
6 10
|
cfv |
|- ( 1st ` t ) |
12 |
4
|
cv |
|- a |
13 |
12 11
|
cfv |
|- ( ( 1st ` t ) ` a ) |
14 |
13
|
csn |
|- { ( ( 1st ` t ) ` a ) } |
15 |
9 14
|
cima |
|- ( ( mUV ` t ) " { ( ( 1st ` t ) ` a ) } ) |
16 |
|
cmap |
|- ^m |
17 |
|
vi |
|- i |
18 |
|
cmvrs |
|- mVars |
19 |
6 18
|
cfv |
|- ( mVars ` t ) |
20 |
12 19
|
cfv |
|- ( ( mVars ` t ) ` a ) |
21 |
|
cmty |
|- mType |
22 |
6 21
|
cfv |
|- ( mType ` t ) |
23 |
17
|
cv |
|- i |
24 |
23 22
|
cfv |
|- ( ( mType ` t ) ` i ) |
25 |
24
|
csn |
|- { ( ( mType ` t ) ` i ) } |
26 |
9 25
|
cima |
|- ( ( mUV ` t ) " { ( ( mType ` t ) ` i ) } ) |
27 |
17 20 26
|
cixp |
|- X_ i e. ( ( mVars ` t ) ` a ) ( ( mUV ` t ) " { ( ( mType ` t ) ` i ) } ) |
28 |
15 27 16
|
co |
|- ( ( ( mUV ` t ) " { ( ( 1st ` t ) ` a ) } ) ^m X_ i e. ( ( mVars ` t ) ` a ) ( ( mUV ` t ) " { ( ( mType ` t ) ` i ) } ) ) |
29 |
4 7 28
|
cixp |
|- X_ a e. ( mSA ` t ) ( ( ( mUV ` t ) " { ( ( 1st ` t ) ` a ) } ) ^m X_ i e. ( ( mVars ` t ) ` a ) ( ( mUV ` t ) " { ( ( mType ` t ) ` i ) } ) ) |
30 |
|
vn |
|- n |
31 |
|
cpm |
|- ^pm |
32 |
|
cmvl |
|- mVL |
33 |
6 32
|
cfv |
|- ( mVL ` t ) |
34 |
|
cmex |
|- mEx |
35 |
6 34
|
cfv |
|- ( mEx ` t ) |
36 |
33 35
|
cxp |
|- ( ( mVL ` t ) X. ( mEx ` t ) ) |
37 |
9 36 31
|
co |
|- ( ( mUV ` t ) ^pm ( ( mVL ` t ) X. ( mEx ` t ) ) ) |
38 |
|
vm |
|- m |
39 |
|
vv |
|- v |
40 |
|
cmvar |
|- mVR |
41 |
6 40
|
cfv |
|- ( mVR ` t ) |
42 |
38
|
cv |
|- m |
43 |
|
cmvh |
|- mVH |
44 |
6 43
|
cfv |
|- ( mVH ` t ) |
45 |
39
|
cv |
|- v |
46 |
45 44
|
cfv |
|- ( ( mVH ` t ) ` v ) |
47 |
42 46
|
cop |
|- <. m , ( ( mVH ` t ) ` v ) >. |
48 |
30
|
cv |
|- n |
49 |
45 42
|
cfv |
|- ( m ` v ) |
50 |
47 49 48
|
wbr |
|- <. m , ( ( mVH ` t ) ` v ) >. n ( m ` v ) |
51 |
50 39 41
|
wral |
|- A. v e. ( mVR ` t ) <. m , ( ( mVH ` t ) ` v ) >. n ( m ` v ) |
52 |
|
ve |
|- e |
53 |
|
vg |
|- g |
54 |
52
|
cv |
|- e |
55 |
|
cmst |
|- mST |
56 |
6 55
|
cfv |
|- ( mST ` t ) |
57 |
53
|
cv |
|- g |
58 |
12 57
|
cop |
|- <. a , g >. |
59 |
54 58 56
|
wbr |
|- e ( mST ` t ) <. a , g >. |
60 |
42 54
|
cop |
|- <. m , e >. |
61 |
3
|
cv |
|- f |
62 |
23 44
|
cfv |
|- ( ( mVH ` t ) ` i ) |
63 |
62 57
|
cfv |
|- ( g ` ( ( mVH ` t ) ` i ) ) |
64 |
42 63 48
|
co |
|- ( m n ( g ` ( ( mVH ` t ) ` i ) ) ) |
65 |
17 20 64
|
cmpt |
|- ( i e. ( ( mVars ` t ) ` a ) |-> ( m n ( g ` ( ( mVH ` t ) ` i ) ) ) ) |
66 |
65 61
|
cfv |
|- ( f ` ( i e. ( ( mVars ` t ) ` a ) |-> ( m n ( g ` ( ( mVH ` t ) ` i ) ) ) ) ) |
67 |
60 66 48
|
wbr |
|- <. m , e >. n ( f ` ( i e. ( ( mVars ` t ) ` a ) |-> ( m n ( g ` ( ( mVH ` t ) ` i ) ) ) ) ) |
68 |
59 67
|
wi |
|- ( e ( mST ` t ) <. a , g >. -> <. m , e >. n ( f ` ( i e. ( ( mVars ` t ) ` a ) |-> ( m n ( g ` ( ( mVH ` t ) ` i ) ) ) ) ) ) |
69 |
68 53
|
wal |
|- A. g ( e ( mST ` t ) <. a , g >. -> <. m , e >. n ( f ` ( i e. ( ( mVars ` t ) ` a ) |-> ( m n ( g ` ( ( mVH ` t ) ` i ) ) ) ) ) ) |
70 |
69 4
|
wal |
|- A. a A. g ( e ( mST ` t ) <. a , g >. -> <. m , e >. n ( f ` ( i e. ( ( mVars ` t ) ` a ) |-> ( m n ( g ` ( ( mVH ` t ) ` i ) ) ) ) ) ) |
71 |
70 52
|
wal |
|- A. e A. a A. g ( e ( mST ` t ) <. a , g >. -> <. m , e >. n ( f ` ( i e. ( ( mVars ` t ) ` a ) |-> ( m n ( g ` ( ( mVH ` t ) ` i ) ) ) ) ) ) |
72 |
60
|
csn |
|- { <. m , e >. } |
73 |
48 72
|
cima |
|- ( n " { <. m , e >. } ) |
74 |
|
cmesy |
|- mESyn |
75 |
6 74
|
cfv |
|- ( mESyn ` t ) |
76 |
54 75
|
cfv |
|- ( ( mESyn ` t ) ` e ) |
77 |
42 76
|
cop |
|- <. m , ( ( mESyn ` t ) ` e ) >. |
78 |
77
|
csn |
|- { <. m , ( ( mESyn ` t ) ` e ) >. } |
79 |
48 78
|
cima |
|- ( n " { <. m , ( ( mESyn ` t ) ` e ) >. } ) |
80 |
54 10
|
cfv |
|- ( 1st ` e ) |
81 |
80
|
csn |
|- { ( 1st ` e ) } |
82 |
9 81
|
cima |
|- ( ( mUV ` t ) " { ( 1st ` e ) } ) |
83 |
79 82
|
cin |
|- ( ( n " { <. m , ( ( mESyn ` t ) ` e ) >. } ) i^i ( ( mUV ` t ) " { ( 1st ` e ) } ) ) |
84 |
73 83
|
wceq |
|- ( n " { <. m , e >. } ) = ( ( n " { <. m , ( ( mESyn ` t ) ` e ) >. } ) i^i ( ( mUV ` t ) " { ( 1st ` e ) } ) ) |
85 |
84 52 35
|
wral |
|- A. e e. ( mEx ` t ) ( n " { <. m , e >. } ) = ( ( n " { <. m , ( ( mESyn ` t ) ` e ) >. } ) i^i ( ( mUV ` t ) " { ( 1st ` e ) } ) ) |
86 |
51 71 85
|
w3a |
|- ( A. v e. ( mVR ` t ) <. m , ( ( mVH ` t ) ` v ) >. n ( m ` v ) /\ A. e A. a A. g ( e ( mST ` t ) <. a , g >. -> <. m , e >. n ( f ` ( i e. ( ( mVars ` t ) ` a ) |-> ( m n ( g ` ( ( mVH ` t ) ` i ) ) ) ) ) ) /\ A. e e. ( mEx ` t ) ( n " { <. m , e >. } ) = ( ( n " { <. m , ( ( mESyn ` t ) ` e ) >. } ) i^i ( ( mUV ` t ) " { ( 1st ` e ) } ) ) ) |
87 |
86 38 33
|
wral |
|- A. m e. ( mVL ` t ) ( A. v e. ( mVR ` t ) <. m , ( ( mVH ` t ) ` v ) >. n ( m ` v ) /\ A. e A. a A. g ( e ( mST ` t ) <. a , g >. -> <. m , e >. n ( f ` ( i e. ( ( mVars ` t ) ` a ) |-> ( m n ( g ` ( ( mVH ` t ) ` i ) ) ) ) ) ) /\ A. e e. ( mEx ` t ) ( n " { <. m , e >. } ) = ( ( n " { <. m , ( ( mESyn ` t ) ` e ) >. } ) i^i ( ( mUV ` t ) " { ( 1st ` e ) } ) ) ) |
88 |
87 30 37
|
crio |
|- ( iota_ n e. ( ( mUV ` t ) ^pm ( ( mVL ` t ) X. ( mEx ` t ) ) ) A. m e. ( mVL ` t ) ( A. v e. ( mVR ` t ) <. m , ( ( mVH ` t ) ` v ) >. n ( m ` v ) /\ A. e A. a A. g ( e ( mST ` t ) <. a , g >. -> <. m , e >. n ( f ` ( i e. ( ( mVars ` t ) ` a ) |-> ( m n ( g ` ( ( mVH ` t ) ` i ) ) ) ) ) ) /\ A. e e. ( mEx ` t ) ( n " { <. m , e >. } ) = ( ( n " { <. m , ( ( mESyn ` t ) ` e ) >. } ) i^i ( ( mUV ` t ) " { ( 1st ` e ) } ) ) ) ) |
89 |
3 29 88
|
cmpt |
|- ( f e. X_ a e. ( mSA ` t ) ( ( ( mUV ` t ) " { ( ( 1st ` t ) ` a ) } ) ^m X_ i e. ( ( mVars ` t ) ` a ) ( ( mUV ` t ) " { ( ( mType ` t ) ` i ) } ) ) |-> ( iota_ n e. ( ( mUV ` t ) ^pm ( ( mVL ` t ) X. ( mEx ` t ) ) ) A. m e. ( mVL ` t ) ( A. v e. ( mVR ` t ) <. m , ( ( mVH ` t ) ` v ) >. n ( m ` v ) /\ A. e A. a A. g ( e ( mST ` t ) <. a , g >. -> <. m , e >. n ( f ` ( i e. ( ( mVars ` t ) ` a ) |-> ( m n ( g ` ( ( mVH ` t ) ` i ) ) ) ) ) ) /\ A. e e. ( mEx ` t ) ( n " { <. m , e >. } ) = ( ( n " { <. m , ( ( mESyn ` t ) ` e ) >. } ) i^i ( ( mUV ` t ) " { ( 1st ` e ) } ) ) ) ) ) |
90 |
1 2 89
|
cmpt |
|- ( t e. _V |-> ( f e. X_ a e. ( mSA ` t ) ( ( ( mUV ` t ) " { ( ( 1st ` t ) ` a ) } ) ^m X_ i e. ( ( mVars ` t ) ` a ) ( ( mUV ` t ) " { ( ( mType ` t ) ` i ) } ) ) |-> ( iota_ n e. ( ( mUV ` t ) ^pm ( ( mVL ` t ) X. ( mEx ` t ) ) ) A. m e. ( mVL ` t ) ( A. v e. ( mVR ` t ) <. m , ( ( mVH ` t ) ` v ) >. n ( m ` v ) /\ A. e A. a A. g ( e ( mST ` t ) <. a , g >. -> <. m , e >. n ( f ` ( i e. ( ( mVars ` t ) ` a ) |-> ( m n ( g ` ( ( mVH ` t ) ` i ) ) ) ) ) ) /\ A. e e. ( mEx ` t ) ( n " { <. m , e >. } ) = ( ( n " { <. m , ( ( mESyn ` t ) ` e ) >. } ) i^i ( ( mUV ` t ) " { ( 1st ` e ) } ) ) ) ) ) ) |
91 |
0 90
|
wceq |
|- mFromItp = ( t e. _V |-> ( f e. X_ a e. ( mSA ` t ) ( ( ( mUV ` t ) " { ( ( 1st ` t ) ` a ) } ) ^m X_ i e. ( ( mVars ` t ) ` a ) ( ( mUV ` t ) " { ( ( mType ` t ) ` i ) } ) ) |-> ( iota_ n e. ( ( mUV ` t ) ^pm ( ( mVL ` t ) X. ( mEx ` t ) ) ) A. m e. ( mVL ` t ) ( A. v e. ( mVR ` t ) <. m , ( ( mVH ` t ) ` v ) >. n ( m ` v ) /\ A. e A. a A. g ( e ( mST ` t ) <. a , g >. -> <. m , e >. n ( f ` ( i e. ( ( mVars ` t ) ` a ) |-> ( m n ( g ` ( ( mVH ` t ) ` i ) ) ) ) ) ) /\ A. e e. ( mEx ` t ) ( n " { <. m , e >. } ) = ( ( n " { <. m , ( ( mESyn ` t ) ` e ) >. } ) i^i ( ( mUV ` t ) " { ( 1st ` e ) } ) ) ) ) ) ) |