Step |
Hyp |
Ref |
Expression |
0 |
|
cmitp |
⊢ mItp |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
cvv |
⊢ V |
3 |
|
va |
⊢ 𝑎 |
4 |
|
cmsa |
⊢ mSA |
5 |
1
|
cv |
⊢ 𝑡 |
6 |
5 4
|
cfv |
⊢ ( mSA ‘ 𝑡 ) |
7 |
|
vg |
⊢ 𝑔 |
8 |
|
vi |
⊢ 𝑖 |
9 |
|
cmvrs |
⊢ mVars |
10 |
5 9
|
cfv |
⊢ ( mVars ‘ 𝑡 ) |
11 |
3
|
cv |
⊢ 𝑎 |
12 |
11 10
|
cfv |
⊢ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) |
13 |
|
cmuv |
⊢ mUV |
14 |
5 13
|
cfv |
⊢ ( mUV ‘ 𝑡 ) |
15 |
|
cmty |
⊢ mType |
16 |
5 15
|
cfv |
⊢ ( mType ‘ 𝑡 ) |
17 |
8
|
cv |
⊢ 𝑖 |
18 |
17 16
|
cfv |
⊢ ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) |
19 |
18
|
csn |
⊢ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } |
20 |
14 19
|
cima |
⊢ ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) |
21 |
8 12 20
|
cixp |
⊢ X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) |
22 |
|
vx |
⊢ 𝑥 |
23 |
|
vm |
⊢ 𝑚 |
24 |
|
cmvl |
⊢ mVL |
25 |
5 24
|
cfv |
⊢ ( mVL ‘ 𝑡 ) |
26 |
7
|
cv |
⊢ 𝑔 |
27 |
23
|
cv |
⊢ 𝑚 |
28 |
27 12
|
cres |
⊢ ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ) |
29 |
26 28
|
wceq |
⊢ 𝑔 = ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ) |
30 |
22
|
cv |
⊢ 𝑥 |
31 |
|
cmevl |
⊢ mEval |
32 |
5 31
|
cfv |
⊢ ( mEval ‘ 𝑡 ) |
33 |
27 11 32
|
co |
⊢ ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 ) |
34 |
30 33
|
wceq |
⊢ 𝑥 = ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 ) |
35 |
29 34
|
wa |
⊢ ( 𝑔 = ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ) ∧ 𝑥 = ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 ) ) |
36 |
35 23 25
|
wrex |
⊢ ∃ 𝑚 ∈ ( mVL ‘ 𝑡 ) ( 𝑔 = ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ) ∧ 𝑥 = ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 ) ) |
37 |
36 22
|
cio |
⊢ ( ℩ 𝑥 ∃ 𝑚 ∈ ( mVL ‘ 𝑡 ) ( 𝑔 = ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ) ∧ 𝑥 = ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 ) ) ) |
38 |
7 21 37
|
cmpt |
⊢ ( 𝑔 ∈ X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) ↦ ( ℩ 𝑥 ∃ 𝑚 ∈ ( mVL ‘ 𝑡 ) ( 𝑔 = ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ) ∧ 𝑥 = ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 ) ) ) ) |
39 |
3 6 38
|
cmpt |
⊢ ( 𝑎 ∈ ( mSA ‘ 𝑡 ) ↦ ( 𝑔 ∈ X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) ↦ ( ℩ 𝑥 ∃ 𝑚 ∈ ( mVL ‘ 𝑡 ) ( 𝑔 = ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ) ∧ 𝑥 = ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 ) ) ) ) ) |
40 |
1 2 39
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ ( 𝑎 ∈ ( mSA ‘ 𝑡 ) ↦ ( 𝑔 ∈ X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) ↦ ( ℩ 𝑥 ∃ 𝑚 ∈ ( mVL ‘ 𝑡 ) ( 𝑔 = ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ) ∧ 𝑥 = ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 ) ) ) ) ) ) |
41 |
0 40
|
wceq |
⊢ mItp = ( 𝑡 ∈ V ↦ ( 𝑎 ∈ ( mSA ‘ 𝑡 ) ↦ ( 𝑔 ∈ X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) ↦ ( ℩ 𝑥 ∃ 𝑚 ∈ ( mVL ‘ 𝑡 ) ( 𝑔 = ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ) ∧ 𝑥 = ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 ) ) ) ) ) ) |