Metamath Proof Explorer


Definition df-mitp

Description: Define the interpretation function for a model. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mitp mItp = ( 𝑡 ∈ V ↦ ( 𝑎 ∈ ( mSA ‘ 𝑡 ) ↦ ( 𝑔X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) ↦ ( ℩ 𝑥𝑚 ∈ ( mVL ‘ 𝑡 ) ( 𝑔 = ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ) ∧ 𝑥 = ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmitp mItp
1 vt 𝑡
2 cvv V
3 va 𝑎
4 cmsa mSA
5 1 cv 𝑡
6 5 4 cfv ( mSA ‘ 𝑡 )
7 vg 𝑔
8 vi 𝑖
9 cmvrs mVars
10 5 9 cfv ( mVars ‘ 𝑡 )
11 3 cv 𝑎
12 11 10 cfv ( ( mVars ‘ 𝑡 ) ‘ 𝑎 )
13 cmuv mUV
14 5 13 cfv ( mUV ‘ 𝑡 )
15 cmty mType
16 5 15 cfv ( mType ‘ 𝑡 )
17 8 cv 𝑖
18 17 16 cfv ( ( mType ‘ 𝑡 ) ‘ 𝑖 )
19 18 csn { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) }
20 14 19 cima ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } )
21 8 12 20 cixp X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } )
22 vx 𝑥
23 vm 𝑚
24 cmvl mVL
25 5 24 cfv ( mVL ‘ 𝑡 )
26 7 cv 𝑔
27 23 cv 𝑚
28 27 12 cres ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) )
29 26 28 wceq 𝑔 = ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) )
30 22 cv 𝑥
31 cmevl mEval
32 5 31 cfv ( mEval ‘ 𝑡 )
33 27 11 32 co ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 )
34 30 33 wceq 𝑥 = ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 )
35 29 34 wa ( 𝑔 = ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ) ∧ 𝑥 = ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 ) )
36 35 23 25 wrex 𝑚 ∈ ( mVL ‘ 𝑡 ) ( 𝑔 = ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ) ∧ 𝑥 = ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 ) )
37 36 22 cio ( ℩ 𝑥𝑚 ∈ ( mVL ‘ 𝑡 ) ( 𝑔 = ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ) ∧ 𝑥 = ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 ) ) )
38 7 21 37 cmpt ( 𝑔X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) ↦ ( ℩ 𝑥𝑚 ∈ ( mVL ‘ 𝑡 ) ( 𝑔 = ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ) ∧ 𝑥 = ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 ) ) ) )
39 3 6 38 cmpt ( 𝑎 ∈ ( mSA ‘ 𝑡 ) ↦ ( 𝑔X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) ↦ ( ℩ 𝑥𝑚 ∈ ( mVL ‘ 𝑡 ) ( 𝑔 = ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ) ∧ 𝑥 = ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 ) ) ) ) )
40 1 2 39 cmpt ( 𝑡 ∈ V ↦ ( 𝑎 ∈ ( mSA ‘ 𝑡 ) ↦ ( 𝑔X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) ↦ ( ℩ 𝑥𝑚 ∈ ( mVL ‘ 𝑡 ) ( 𝑔 = ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ) ∧ 𝑥 = ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 ) ) ) ) ) )
41 0 40 wceq mItp = ( 𝑡 ∈ V ↦ ( 𝑎 ∈ ( mSA ‘ 𝑡 ) ↦ ( 𝑔X 𝑖 ∈ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑖 ) } ) ↦ ( ℩ 𝑥𝑚 ∈ ( mVL ‘ 𝑡 ) ( 𝑔 = ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑎 ) ) ∧ 𝑥 = ( 𝑚 ( mEval ‘ 𝑡 ) 𝑎 ) ) ) ) ) )