| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cgmdl |
⊢ mGMdl |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
cmgfs |
⊢ mGFS |
| 3 |
|
cmdl |
⊢ mMdl |
| 4 |
2 3
|
cin |
⊢ ( mGFS ∩ mMdl ) |
| 5 |
|
vc |
⊢ 𝑐 |
| 6 |
|
cmtc |
⊢ mTC |
| 7 |
1
|
cv |
⊢ 𝑡 |
| 8 |
7 6
|
cfv |
⊢ ( mTC ‘ 𝑡 ) |
| 9 |
|
cmuv |
⊢ mUV |
| 10 |
7 9
|
cfv |
⊢ ( mUV ‘ 𝑡 ) |
| 11 |
5
|
cv |
⊢ 𝑐 |
| 12 |
11
|
csn |
⊢ { 𝑐 } |
| 13 |
10 12
|
cima |
⊢ ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) |
| 14 |
|
cmsy |
⊢ mSyn |
| 15 |
7 14
|
cfv |
⊢ ( mSyn ‘ 𝑡 ) |
| 16 |
11 15
|
cfv |
⊢ ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) |
| 17 |
16
|
csn |
⊢ { ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) } |
| 18 |
10 17
|
cima |
⊢ ( ( mUV ‘ 𝑡 ) “ { ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) } ) |
| 19 |
13 18
|
wss |
⊢ ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) ⊆ ( ( mUV ‘ 𝑡 ) “ { ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) } ) |
| 20 |
19 5 8
|
wral |
⊢ ∀ 𝑐 ∈ ( mTC ‘ 𝑡 ) ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) ⊆ ( ( mUV ‘ 𝑡 ) “ { ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) } ) |
| 21 |
|
vv |
⊢ 𝑣 |
| 22 |
11 9
|
cfv |
⊢ ( mUV ‘ 𝑐 ) |
| 23 |
|
vw |
⊢ 𝑤 |
| 24 |
21
|
cv |
⊢ 𝑣 |
| 25 |
|
cmfsh |
⊢ mFresh |
| 26 |
7 25
|
cfv |
⊢ ( mFresh ‘ 𝑡 ) |
| 27 |
23
|
cv |
⊢ 𝑤 |
| 28 |
24 27 26
|
wbr |
⊢ 𝑣 ( mFresh ‘ 𝑡 ) 𝑤 |
| 29 |
|
cusyn |
⊢ mUSyn |
| 30 |
7 29
|
cfv |
⊢ ( mUSyn ‘ 𝑡 ) |
| 31 |
27 30
|
cfv |
⊢ ( ( mUSyn ‘ 𝑡 ) ‘ 𝑤 ) |
| 32 |
24 31 26
|
wbr |
⊢ 𝑣 ( mFresh ‘ 𝑡 ) ( ( mUSyn ‘ 𝑡 ) ‘ 𝑤 ) |
| 33 |
28 32
|
wb |
⊢ ( 𝑣 ( mFresh ‘ 𝑡 ) 𝑤 ↔ 𝑣 ( mFresh ‘ 𝑡 ) ( ( mUSyn ‘ 𝑡 ) ‘ 𝑤 ) ) |
| 34 |
33 23 22
|
wral |
⊢ ∀ 𝑤 ∈ ( mUV ‘ 𝑐 ) ( 𝑣 ( mFresh ‘ 𝑡 ) 𝑤 ↔ 𝑣 ( mFresh ‘ 𝑡 ) ( ( mUSyn ‘ 𝑡 ) ‘ 𝑤 ) ) |
| 35 |
34 21 22
|
wral |
⊢ ∀ 𝑣 ∈ ( mUV ‘ 𝑐 ) ∀ 𝑤 ∈ ( mUV ‘ 𝑐 ) ( 𝑣 ( mFresh ‘ 𝑡 ) 𝑤 ↔ 𝑣 ( mFresh ‘ 𝑡 ) ( ( mUSyn ‘ 𝑡 ) ‘ 𝑤 ) ) |
| 36 |
|
vm |
⊢ 𝑚 |
| 37 |
|
cmvl |
⊢ mVL |
| 38 |
7 37
|
cfv |
⊢ ( mVL ‘ 𝑡 ) |
| 39 |
|
ve |
⊢ 𝑒 |
| 40 |
|
cmex |
⊢ mEx |
| 41 |
7 40
|
cfv |
⊢ ( mEx ‘ 𝑡 ) |
| 42 |
|
cmevl |
⊢ mEval |
| 43 |
7 42
|
cfv |
⊢ ( mEval ‘ 𝑡 ) |
| 44 |
36
|
cv |
⊢ 𝑚 |
| 45 |
39
|
cv |
⊢ 𝑒 |
| 46 |
44 45
|
cop |
⊢ 〈 𝑚 , 𝑒 〉 |
| 47 |
46
|
csn |
⊢ { 〈 𝑚 , 𝑒 〉 } |
| 48 |
43 47
|
cima |
⊢ ( ( mEval ‘ 𝑡 ) “ { 〈 𝑚 , 𝑒 〉 } ) |
| 49 |
|
cmesy |
⊢ mESyn |
| 50 |
7 49
|
cfv |
⊢ ( mESyn ‘ 𝑡 ) |
| 51 |
45 50
|
cfv |
⊢ ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) |
| 52 |
44 51
|
cop |
⊢ 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 |
| 53 |
52
|
csn |
⊢ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } |
| 54 |
43 53
|
cima |
⊢ ( ( mEval ‘ 𝑡 ) “ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } ) |
| 55 |
|
c1st |
⊢ 1st |
| 56 |
45 55
|
cfv |
⊢ ( 1st ‘ 𝑒 ) |
| 57 |
56
|
csn |
⊢ { ( 1st ‘ 𝑒 ) } |
| 58 |
10 57
|
cima |
⊢ ( ( mUV ‘ 𝑡 ) “ { ( 1st ‘ 𝑒 ) } ) |
| 59 |
54 58
|
cin |
⊢ ( ( ( mEval ‘ 𝑡 ) “ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st ‘ 𝑒 ) } ) ) |
| 60 |
48 59
|
wceq |
⊢ ( ( mEval ‘ 𝑡 ) “ { 〈 𝑚 , 𝑒 〉 } ) = ( ( ( mEval ‘ 𝑡 ) “ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st ‘ 𝑒 ) } ) ) |
| 61 |
60 39 41
|
wral |
⊢ ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( ( mEval ‘ 𝑡 ) “ { 〈 𝑚 , 𝑒 〉 } ) = ( ( ( mEval ‘ 𝑡 ) “ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st ‘ 𝑒 ) } ) ) |
| 62 |
61 36 38
|
wral |
⊢ ∀ 𝑚 ∈ ( mVL ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( ( mEval ‘ 𝑡 ) “ { 〈 𝑚 , 𝑒 〉 } ) = ( ( ( mEval ‘ 𝑡 ) “ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st ‘ 𝑒 ) } ) ) |
| 63 |
20 35 62
|
w3a |
⊢ ( ∀ 𝑐 ∈ ( mTC ‘ 𝑡 ) ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) ⊆ ( ( mUV ‘ 𝑡 ) “ { ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) } ) ∧ ∀ 𝑣 ∈ ( mUV ‘ 𝑐 ) ∀ 𝑤 ∈ ( mUV ‘ 𝑐 ) ( 𝑣 ( mFresh ‘ 𝑡 ) 𝑤 ↔ 𝑣 ( mFresh ‘ 𝑡 ) ( ( mUSyn ‘ 𝑡 ) ‘ 𝑤 ) ) ∧ ∀ 𝑚 ∈ ( mVL ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( ( mEval ‘ 𝑡 ) “ { 〈 𝑚 , 𝑒 〉 } ) = ( ( ( mEval ‘ 𝑡 ) “ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st ‘ 𝑒 ) } ) ) ) |
| 64 |
63 1 4
|
crab |
⊢ { 𝑡 ∈ ( mGFS ∩ mMdl ) ∣ ( ∀ 𝑐 ∈ ( mTC ‘ 𝑡 ) ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) ⊆ ( ( mUV ‘ 𝑡 ) “ { ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) } ) ∧ ∀ 𝑣 ∈ ( mUV ‘ 𝑐 ) ∀ 𝑤 ∈ ( mUV ‘ 𝑐 ) ( 𝑣 ( mFresh ‘ 𝑡 ) 𝑤 ↔ 𝑣 ( mFresh ‘ 𝑡 ) ( ( mUSyn ‘ 𝑡 ) ‘ 𝑤 ) ) ∧ ∀ 𝑚 ∈ ( mVL ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( ( mEval ‘ 𝑡 ) “ { 〈 𝑚 , 𝑒 〉 } ) = ( ( ( mEval ‘ 𝑡 ) “ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st ‘ 𝑒 ) } ) ) ) } |
| 65 |
0 64
|
wceq |
⊢ mGMdl = { 𝑡 ∈ ( mGFS ∩ mMdl ) ∣ ( ∀ 𝑐 ∈ ( mTC ‘ 𝑡 ) ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) ⊆ ( ( mUV ‘ 𝑡 ) “ { ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) } ) ∧ ∀ 𝑣 ∈ ( mUV ‘ 𝑐 ) ∀ 𝑤 ∈ ( mUV ‘ 𝑐 ) ( 𝑣 ( mFresh ‘ 𝑡 ) 𝑤 ↔ 𝑣 ( mFresh ‘ 𝑡 ) ( ( mUSyn ‘ 𝑡 ) ‘ 𝑤 ) ) ∧ ∀ 𝑚 ∈ ( mVL ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ( ( mEval ‘ 𝑡 ) “ { 〈 𝑚 , 𝑒 〉 } ) = ( ( ( mEval ‘ 𝑡 ) “ { 〈 𝑚 , ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } ) ∩ ( ( mUV ‘ 𝑡 ) “ { ( 1st ‘ 𝑒 ) } ) ) ) } |