| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cgmdl | 
							⊢ mGMdl  | 
						
						
							| 1 | 
							
								
							 | 
							vt | 
							⊢ 𝑡  | 
						
						
							| 2 | 
							
								
							 | 
							cmgfs | 
							⊢ mGFS  | 
						
						
							| 3 | 
							
								
							 | 
							cmdl | 
							⊢ mMdl  | 
						
						
							| 4 | 
							
								2 3
							 | 
							cin | 
							⊢ ( mGFS  ∩  mMdl )  | 
						
						
							| 5 | 
							
								
							 | 
							vc | 
							⊢ 𝑐  | 
						
						
							| 6 | 
							
								
							 | 
							cmtc | 
							⊢ mTC  | 
						
						
							| 7 | 
							
								1
							 | 
							cv | 
							⊢ 𝑡  | 
						
						
							| 8 | 
							
								7 6
							 | 
							cfv | 
							⊢ ( mTC ‘ 𝑡 )  | 
						
						
							| 9 | 
							
								
							 | 
							cmuv | 
							⊢ mUV  | 
						
						
							| 10 | 
							
								7 9
							 | 
							cfv | 
							⊢ ( mUV ‘ 𝑡 )  | 
						
						
							| 11 | 
							
								5
							 | 
							cv | 
							⊢ 𝑐  | 
						
						
							| 12 | 
							
								11
							 | 
							csn | 
							⊢ { 𝑐 }  | 
						
						
							| 13 | 
							
								10 12
							 | 
							cima | 
							⊢ ( ( mUV ‘ 𝑡 )  “  { 𝑐 } )  | 
						
						
							| 14 | 
							
								
							 | 
							cmsy | 
							⊢ mSyn  | 
						
						
							| 15 | 
							
								7 14
							 | 
							cfv | 
							⊢ ( mSyn ‘ 𝑡 )  | 
						
						
							| 16 | 
							
								11 15
							 | 
							cfv | 
							⊢ ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 )  | 
						
						
							| 17 | 
							
								16
							 | 
							csn | 
							⊢ { ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) }  | 
						
						
							| 18 | 
							
								10 17
							 | 
							cima | 
							⊢ ( ( mUV ‘ 𝑡 )  “  { ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) } )  | 
						
						
							| 19 | 
							
								13 18
							 | 
							wss | 
							⊢ ( ( mUV ‘ 𝑡 )  “  { 𝑐 } )  ⊆  ( ( mUV ‘ 𝑡 )  “  { ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) } )  | 
						
						
							| 20 | 
							
								19 5 8
							 | 
							wral | 
							⊢ ∀ 𝑐  ∈  ( mTC ‘ 𝑡 ) ( ( mUV ‘ 𝑡 )  “  { 𝑐 } )  ⊆  ( ( mUV ‘ 𝑡 )  “  { ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) } )  | 
						
						
							| 21 | 
							
								
							 | 
							vv | 
							⊢ 𝑣  | 
						
						
							| 22 | 
							
								11 9
							 | 
							cfv | 
							⊢ ( mUV ‘ 𝑐 )  | 
						
						
							| 23 | 
							
								
							 | 
							vw | 
							⊢ 𝑤  | 
						
						
							| 24 | 
							
								21
							 | 
							cv | 
							⊢ 𝑣  | 
						
						
							| 25 | 
							
								
							 | 
							cmfsh | 
							⊢ mFresh  | 
						
						
							| 26 | 
							
								7 25
							 | 
							cfv | 
							⊢ ( mFresh ‘ 𝑡 )  | 
						
						
							| 27 | 
							
								23
							 | 
							cv | 
							⊢ 𝑤  | 
						
						
							| 28 | 
							
								24 27 26
							 | 
							wbr | 
							⊢ 𝑣 ( mFresh ‘ 𝑡 ) 𝑤  | 
						
						
							| 29 | 
							
								
							 | 
							cusyn | 
							⊢ mUSyn  | 
						
						
							| 30 | 
							
								7 29
							 | 
							cfv | 
							⊢ ( mUSyn ‘ 𝑡 )  | 
						
						
							| 31 | 
							
								27 30
							 | 
							cfv | 
							⊢ ( ( mUSyn ‘ 𝑡 ) ‘ 𝑤 )  | 
						
						
							| 32 | 
							
								24 31 26
							 | 
							wbr | 
							⊢ 𝑣 ( mFresh ‘ 𝑡 ) ( ( mUSyn ‘ 𝑡 ) ‘ 𝑤 )  | 
						
						
							| 33 | 
							
								28 32
							 | 
							wb | 
							⊢ ( 𝑣 ( mFresh ‘ 𝑡 ) 𝑤  ↔  𝑣 ( mFresh ‘ 𝑡 ) ( ( mUSyn ‘ 𝑡 ) ‘ 𝑤 ) )  | 
						
						
							| 34 | 
							
								33 23 22
							 | 
							wral | 
							⊢ ∀ 𝑤  ∈  ( mUV ‘ 𝑐 ) ( 𝑣 ( mFresh ‘ 𝑡 ) 𝑤  ↔  𝑣 ( mFresh ‘ 𝑡 ) ( ( mUSyn ‘ 𝑡 ) ‘ 𝑤 ) )  | 
						
						
							| 35 | 
							
								34 21 22
							 | 
							wral | 
							⊢ ∀ 𝑣  ∈  ( mUV ‘ 𝑐 ) ∀ 𝑤  ∈  ( mUV ‘ 𝑐 ) ( 𝑣 ( mFresh ‘ 𝑡 ) 𝑤  ↔  𝑣 ( mFresh ‘ 𝑡 ) ( ( mUSyn ‘ 𝑡 ) ‘ 𝑤 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							vm | 
							⊢ 𝑚  | 
						
						
							| 37 | 
							
								
							 | 
							cmvl | 
							⊢ mVL  | 
						
						
							| 38 | 
							
								7 37
							 | 
							cfv | 
							⊢ ( mVL ‘ 𝑡 )  | 
						
						
							| 39 | 
							
								
							 | 
							ve | 
							⊢ 𝑒  | 
						
						
							| 40 | 
							
								
							 | 
							cmex | 
							⊢ mEx  | 
						
						
							| 41 | 
							
								7 40
							 | 
							cfv | 
							⊢ ( mEx ‘ 𝑡 )  | 
						
						
							| 42 | 
							
								
							 | 
							cmevl | 
							⊢ mEval  | 
						
						
							| 43 | 
							
								7 42
							 | 
							cfv | 
							⊢ ( mEval ‘ 𝑡 )  | 
						
						
							| 44 | 
							
								36
							 | 
							cv | 
							⊢ 𝑚  | 
						
						
							| 45 | 
							
								39
							 | 
							cv | 
							⊢ 𝑒  | 
						
						
							| 46 | 
							
								44 45
							 | 
							cop | 
							⊢ 〈 𝑚 ,  𝑒 〉  | 
						
						
							| 47 | 
							
								46
							 | 
							csn | 
							⊢ { 〈 𝑚 ,  𝑒 〉 }  | 
						
						
							| 48 | 
							
								43 47
							 | 
							cima | 
							⊢ ( ( mEval ‘ 𝑡 )  “  { 〈 𝑚 ,  𝑒 〉 } )  | 
						
						
							| 49 | 
							
								
							 | 
							cmesy | 
							⊢ mESyn  | 
						
						
							| 50 | 
							
								7 49
							 | 
							cfv | 
							⊢ ( mESyn ‘ 𝑡 )  | 
						
						
							| 51 | 
							
								45 50
							 | 
							cfv | 
							⊢ ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 )  | 
						
						
							| 52 | 
							
								44 51
							 | 
							cop | 
							⊢ 〈 𝑚 ,  ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉  | 
						
						
							| 53 | 
							
								52
							 | 
							csn | 
							⊢ { 〈 𝑚 ,  ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 }  | 
						
						
							| 54 | 
							
								43 53
							 | 
							cima | 
							⊢ ( ( mEval ‘ 𝑡 )  “  { 〈 𝑚 ,  ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } )  | 
						
						
							| 55 | 
							
								
							 | 
							c1st | 
							⊢ 1st   | 
						
						
							| 56 | 
							
								45 55
							 | 
							cfv | 
							⊢ ( 1st  ‘ 𝑒 )  | 
						
						
							| 57 | 
							
								56
							 | 
							csn | 
							⊢ { ( 1st  ‘ 𝑒 ) }  | 
						
						
							| 58 | 
							
								10 57
							 | 
							cima | 
							⊢ ( ( mUV ‘ 𝑡 )  “  { ( 1st  ‘ 𝑒 ) } )  | 
						
						
							| 59 | 
							
								54 58
							 | 
							cin | 
							⊢ ( ( ( mEval ‘ 𝑡 )  “  { 〈 𝑚 ,  ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } )  ∩  ( ( mUV ‘ 𝑡 )  “  { ( 1st  ‘ 𝑒 ) } ) )  | 
						
						
							| 60 | 
							
								48 59
							 | 
							wceq | 
							⊢ ( ( mEval ‘ 𝑡 )  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( ( ( mEval ‘ 𝑡 )  “  { 〈 𝑚 ,  ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } )  ∩  ( ( mUV ‘ 𝑡 )  “  { ( 1st  ‘ 𝑒 ) } ) )  | 
						
						
							| 61 | 
							
								60 39 41
							 | 
							wral | 
							⊢ ∀ 𝑒  ∈  ( mEx ‘ 𝑡 ) ( ( mEval ‘ 𝑡 )  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( ( ( mEval ‘ 𝑡 )  “  { 〈 𝑚 ,  ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } )  ∩  ( ( mUV ‘ 𝑡 )  “  { ( 1st  ‘ 𝑒 ) } ) )  | 
						
						
							| 62 | 
							
								61 36 38
							 | 
							wral | 
							⊢ ∀ 𝑚  ∈  ( mVL ‘ 𝑡 ) ∀ 𝑒  ∈  ( mEx ‘ 𝑡 ) ( ( mEval ‘ 𝑡 )  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( ( ( mEval ‘ 𝑡 )  “  { 〈 𝑚 ,  ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } )  ∩  ( ( mUV ‘ 𝑡 )  “  { ( 1st  ‘ 𝑒 ) } ) )  | 
						
						
							| 63 | 
							
								20 35 62
							 | 
							w3a | 
							⊢ ( ∀ 𝑐  ∈  ( mTC ‘ 𝑡 ) ( ( mUV ‘ 𝑡 )  “  { 𝑐 } )  ⊆  ( ( mUV ‘ 𝑡 )  “  { ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) } )  ∧  ∀ 𝑣  ∈  ( mUV ‘ 𝑐 ) ∀ 𝑤  ∈  ( mUV ‘ 𝑐 ) ( 𝑣 ( mFresh ‘ 𝑡 ) 𝑤  ↔  𝑣 ( mFresh ‘ 𝑡 ) ( ( mUSyn ‘ 𝑡 ) ‘ 𝑤 ) )  ∧  ∀ 𝑚  ∈  ( mVL ‘ 𝑡 ) ∀ 𝑒  ∈  ( mEx ‘ 𝑡 ) ( ( mEval ‘ 𝑡 )  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( ( ( mEval ‘ 𝑡 )  “  { 〈 𝑚 ,  ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } )  ∩  ( ( mUV ‘ 𝑡 )  “  { ( 1st  ‘ 𝑒 ) } ) ) )  | 
						
						
							| 64 | 
							
								63 1 4
							 | 
							crab | 
							⊢ { 𝑡  ∈  ( mGFS  ∩  mMdl )  ∣  ( ∀ 𝑐  ∈  ( mTC ‘ 𝑡 ) ( ( mUV ‘ 𝑡 )  “  { 𝑐 } )  ⊆  ( ( mUV ‘ 𝑡 )  “  { ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) } )  ∧  ∀ 𝑣  ∈  ( mUV ‘ 𝑐 ) ∀ 𝑤  ∈  ( mUV ‘ 𝑐 ) ( 𝑣 ( mFresh ‘ 𝑡 ) 𝑤  ↔  𝑣 ( mFresh ‘ 𝑡 ) ( ( mUSyn ‘ 𝑡 ) ‘ 𝑤 ) )  ∧  ∀ 𝑚  ∈  ( mVL ‘ 𝑡 ) ∀ 𝑒  ∈  ( mEx ‘ 𝑡 ) ( ( mEval ‘ 𝑡 )  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( ( ( mEval ‘ 𝑡 )  “  { 〈 𝑚 ,  ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } )  ∩  ( ( mUV ‘ 𝑡 )  “  { ( 1st  ‘ 𝑒 ) } ) ) ) }  | 
						
						
							| 65 | 
							
								0 64
							 | 
							wceq | 
							⊢ mGMdl  =  { 𝑡  ∈  ( mGFS  ∩  mMdl )  ∣  ( ∀ 𝑐  ∈  ( mTC ‘ 𝑡 ) ( ( mUV ‘ 𝑡 )  “  { 𝑐 } )  ⊆  ( ( mUV ‘ 𝑡 )  “  { ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) } )  ∧  ∀ 𝑣  ∈  ( mUV ‘ 𝑐 ) ∀ 𝑤  ∈  ( mUV ‘ 𝑐 ) ( 𝑣 ( mFresh ‘ 𝑡 ) 𝑤  ↔  𝑣 ( mFresh ‘ 𝑡 ) ( ( mUSyn ‘ 𝑡 ) ‘ 𝑤 ) )  ∧  ∀ 𝑚  ∈  ( mVL ‘ 𝑡 ) ∀ 𝑒  ∈  ( mEx ‘ 𝑡 ) ( ( mEval ‘ 𝑡 )  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( ( ( mEval ‘ 𝑡 )  “  { 〈 𝑚 ,  ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) 〉 } )  ∩  ( ( mUV ‘ 𝑡 )  “  { ( 1st  ‘ 𝑒 ) } ) ) ) }  |