Metamath Proof Explorer


Definition df-musyn

Description: Define the syntax typecode function for the model universe. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-musyn mUSyn = ( 𝑡 ∈ V ↦ ( 𝑣 ∈ ( mUV ‘ 𝑡 ) ↦ ⟨ ( ( mSyn ‘ 𝑡 ) ‘ ( 1st𝑣 ) ) , ( 2nd𝑣 ) ⟩ ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cusyn mUSyn
1 vt 𝑡
2 cvv V
3 vv 𝑣
4 cmuv mUV
5 1 cv 𝑡
6 5 4 cfv ( mUV ‘ 𝑡 )
7 cmsy mSyn
8 5 7 cfv ( mSyn ‘ 𝑡 )
9 c1st 1st
10 3 cv 𝑣
11 10 9 cfv ( 1st𝑣 )
12 11 8 cfv ( ( mSyn ‘ 𝑡 ) ‘ ( 1st𝑣 ) )
13 c2nd 2nd
14 10 13 cfv ( 2nd𝑣 )
15 12 14 cop ⟨ ( ( mSyn ‘ 𝑡 ) ‘ ( 1st𝑣 ) ) , ( 2nd𝑣 ) ⟩
16 3 6 15 cmpt ( 𝑣 ∈ ( mUV ‘ 𝑡 ) ↦ ⟨ ( ( mSyn ‘ 𝑡 ) ‘ ( 1st𝑣 ) ) , ( 2nd𝑣 ) ⟩ )
17 1 2 16 cmpt ( 𝑡 ∈ V ↦ ( 𝑣 ∈ ( mUV ‘ 𝑡 ) ↦ ⟨ ( ( mSyn ‘ 𝑡 ) ‘ ( 1st𝑣 ) ) , ( 2nd𝑣 ) ⟩ ) )
18 0 17 wceq mUSyn = ( 𝑡 ∈ V ↦ ( 𝑣 ∈ ( mUV ‘ 𝑡 ) ↦ ⟨ ( ( mSyn ‘ 𝑡 ) ‘ ( 1st𝑣 ) ) , ( 2nd𝑣 ) ⟩ ) )