Metamath Proof Explorer
Description: Define negated membership as binary relation. Analogous to df-eprel (the membership relation). (Contributed by AV, 26-Dec-2021)
|
|
Ref |
Expression |
|
Assertion |
df-nelbr |
|
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cnelbr |
|
1 |
|
vx |
|
2 |
|
vy |
|
3 |
1
|
cv |
|
4 |
2
|
cv |
|
5 |
3 4
|
wcel |
|
6 |
5
|
wn |
|
7 |
6 1 2
|
copab |
|
8 |
0 7
|
wceq |
|