Metamath Proof Explorer


Definition df-ocv

Description: Define the orthocomplement function in a given set (which usually is a pre-Hilbert space): it associates with a subset its orthogonal subset (which in the case of a closed linear subspace is its orthocomplement). (Contributed by NM, 7-Oct-2011)

Ref Expression
Assertion df-ocv ocv=hVs𝒫BasehxBaseh|ysx𝑖hy=0Scalarh

Detailed syntax breakdown

Step Hyp Ref Expression
0 cocv classocv
1 vh setvarh
2 cvv classV
3 vs setvars
4 cbs classBase
5 1 cv setvarh
6 5 4 cfv classBaseh
7 6 cpw class𝒫Baseh
8 vx setvarx
9 vy setvary
10 3 cv setvars
11 8 cv setvarx
12 cip class𝑖
13 5 12 cfv class𝑖h
14 9 cv setvary
15 11 14 13 co classx𝑖hy
16 c0g class0𝑔
17 csca classScalar
18 5 17 cfv classScalarh
19 18 16 cfv class0Scalarh
20 15 19 wceq wffx𝑖hy=0Scalarh
21 20 9 10 wral wffysx𝑖hy=0Scalarh
22 21 8 6 crab classxBaseh|ysx𝑖hy=0Scalarh
23 3 7 22 cmpt classs𝒫BasehxBaseh|ysx𝑖hy=0Scalarh
24 1 2 23 cmpt classhVs𝒫BasehxBaseh|ysx𝑖hy=0Scalarh
25 0 24 wceq wffocv=hVs𝒫BasehxBaseh|ysx𝑖hy=0Scalarh