| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cocv |  |-  ocv | 
						
							| 1 |  | vh |  |-  h | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vs |  |-  s | 
						
							| 4 |  | cbs |  |-  Base | 
						
							| 5 | 1 | cv |  |-  h | 
						
							| 6 | 5 4 | cfv |  |-  ( Base ` h ) | 
						
							| 7 | 6 | cpw |  |-  ~P ( Base ` h ) | 
						
							| 8 |  | vx |  |-  x | 
						
							| 9 |  | vy |  |-  y | 
						
							| 10 | 3 | cv |  |-  s | 
						
							| 11 | 8 | cv |  |-  x | 
						
							| 12 |  | cip |  |-  .i | 
						
							| 13 | 5 12 | cfv |  |-  ( .i ` h ) | 
						
							| 14 | 9 | cv |  |-  y | 
						
							| 15 | 11 14 13 | co |  |-  ( x ( .i ` h ) y ) | 
						
							| 16 |  | c0g |  |-  0g | 
						
							| 17 |  | csca |  |-  Scalar | 
						
							| 18 | 5 17 | cfv |  |-  ( Scalar ` h ) | 
						
							| 19 | 18 16 | cfv |  |-  ( 0g ` ( Scalar ` h ) ) | 
						
							| 20 | 15 19 | wceq |  |-  ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) | 
						
							| 21 | 20 9 10 | wral |  |-  A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) | 
						
							| 22 | 21 8 6 | crab |  |-  { x e. ( Base ` h ) | A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) } | 
						
							| 23 | 3 7 22 | cmpt |  |-  ( s e. ~P ( Base ` h ) |-> { x e. ( Base ` h ) | A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) } ) | 
						
							| 24 | 1 2 23 | cmpt |  |-  ( h e. _V |-> ( s e. ~P ( Base ` h ) |-> { x e. ( Base ` h ) | A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) } ) ) | 
						
							| 25 | 0 24 | wceq |  |-  ocv = ( h e. _V |-> ( s e. ~P ( Base ` h ) |-> { x e. ( Base ` h ) | A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) } ) ) |