| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cocv | ⊢ ocv | 
						
							| 1 |  | vh | ⊢ ℎ | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vs | ⊢ 𝑠 | 
						
							| 4 |  | cbs | ⊢ Base | 
						
							| 5 | 1 | cv | ⊢ ℎ | 
						
							| 6 | 5 4 | cfv | ⊢ ( Base ‘ ℎ ) | 
						
							| 7 | 6 | cpw | ⊢ 𝒫  ( Base ‘ ℎ ) | 
						
							| 8 |  | vx | ⊢ 𝑥 | 
						
							| 9 |  | vy | ⊢ 𝑦 | 
						
							| 10 | 3 | cv | ⊢ 𝑠 | 
						
							| 11 | 8 | cv | ⊢ 𝑥 | 
						
							| 12 |  | cip | ⊢ ·𝑖 | 
						
							| 13 | 5 12 | cfv | ⊢ ( ·𝑖 ‘ ℎ ) | 
						
							| 14 | 9 | cv | ⊢ 𝑦 | 
						
							| 15 | 11 14 13 | co | ⊢ ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) | 
						
							| 16 |  | c0g | ⊢ 0g | 
						
							| 17 |  | csca | ⊢ Scalar | 
						
							| 18 | 5 17 | cfv | ⊢ ( Scalar ‘ ℎ ) | 
						
							| 19 | 18 16 | cfv | ⊢ ( 0g ‘ ( Scalar ‘ ℎ ) ) | 
						
							| 20 | 15 19 | wceq | ⊢ ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ ℎ ) ) | 
						
							| 21 | 20 9 10 | wral | ⊢ ∀ 𝑦  ∈  𝑠 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ ℎ ) ) | 
						
							| 22 | 21 8 6 | crab | ⊢ { 𝑥  ∈  ( Base ‘ ℎ )  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ ℎ ) ) } | 
						
							| 23 | 3 7 22 | cmpt | ⊢ ( 𝑠  ∈  𝒫  ( Base ‘ ℎ )  ↦  { 𝑥  ∈  ( Base ‘ ℎ )  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ ℎ ) ) } ) | 
						
							| 24 | 1 2 23 | cmpt | ⊢ ( ℎ  ∈  V  ↦  ( 𝑠  ∈  𝒫  ( Base ‘ ℎ )  ↦  { 𝑥  ∈  ( Base ‘ ℎ )  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ ℎ ) ) } ) ) | 
						
							| 25 | 0 24 | wceq | ⊢ ocv  =  ( ℎ  ∈  V  ↦  ( 𝑠  ∈  𝒫  ( Base ‘ ℎ )  ↦  { 𝑥  ∈  ( Base ‘ ℎ )  ∣  ∀ 𝑦  ∈  𝑠 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ ℎ ) ) } ) ) |